
An Initial Look at Alternative
Computing Technologies for the

Intelligence Community

INSTITUTE FOR DEFENSE ANALYSES
4850 Mark Center Drive

Alexandria, Virginia 22311-1882

Lance Joneckis - IDA
David Koester - MITRE Corporation

Joshua Alspector - IDA

I N S T I T U T E F O R D E F E N S E A N A L Y S E S

January 2014

IDA Paper P-5114
Log: H 14-000128

Approved for public release;
distribution is unlimited.

About This Publication
This work was conducted by the Institute for Defense Analyses (IDA)
under contract HQ0034-14-D-0001, Project ET-2-2954.22, “Alternative
Computational Technology.” This research is based upon work supported
by the Office of the Director of National Intelligence (ODNI), Intelligence
Advanced Research Projects Activity (IARPA), via Army Contracting
Command contract number W91WAW-12-C-0017. The views and
conclusions contained herein are those of the authors and should not be
interpreted as necessarily representing the official policies or
endorsements, either expressed or implied, of the ODNI, IARPA, or the
U.S. Government. The U.S. Government is authorized to reproduce and
distribute reprints for Governmental purposed notwithstanding any
copyright annotation thereon.

Copyright Notice
© 2014 Institute for Defense Analyses
4850 Mark Center Drive, Alexandria, Virginia 22311-1882 • (703)845-2000.

This material may be reproduced by or for the U.S. Government
pursuant to the copyright license under the clause at DFARS
252.227-7013 (a)(16) [Sep 2011].

IDA Paper P-5114

An Initial Look at Alternative
Computing Technologies for the

Intelligence Community

Lance Joneckis - IDA
David Koester - MITRE Corporation

Joshua Alspector - IDA

I N S T I T U T E F O R D E F E N S E A N A L Y S E S

Contents

1 Executive Summary . 1
2 Findings and Recommendations 5

2.1 Global Recommendations 5
2.2 Compute model-specific solutions. 6

2.2.1 Classical Digital Computing 6
2.2.2 Neuro-Inspired . 9
2.2.3 Analog . 10
2.2.4 Quantum Computing 10

3 The Big Picture . 13
3.1 An Example of Holistic Design: Google’s Compute Infrastructure . . 13
3.2 Google’s Example Applied to the IC 14

3.2.1 Classical Digital Computing 21
3.2.2 Neuro-Inspired Computation 27
3.2.3 Analog Computing . 29
3.2.4 Quantum Digital . 30

3.3 Conclusion. 31
4 Detailed Discussion: Compute Models. 33

4.1 Fundamental Physical Limits on Computation 33
4.1.1 Landauer Limit . 34
4.1.2 Bekenstein Bound . 34
4.1.3 Bremermann’s Limit and the Margolus-Levitin Theorem 35
4.1.4 Efficient Solution of NP-Complete Problems 35

4.2 Turing Machine . 35
4.2.1 Technologies . 37
4.2.2 Algorithms and Processing 37

4.3 Analog . 38
4.3.1 Theoretical Introduction 38
4.3.2 Practical Introduction 40

4.4 Neuro-Inspired . 41
4.4.1 Description . 41
4.4.2 Algorithms/Processing 42

4.5 Quantum Turing Machine (QTM) 42
5 Detailed Discussion: Compute Technologies. 45

5.1 CMOS and Beyond CMOS for Conventional CMOS Computing . . . 45
5.1.1 Technologies . 46
5.1.2 Conventional Algorithms and Processing 47

5.2 Digital Cryogenic Superconducting 47
5.2.1 Technologies . 48
5.2.2 Algorithms/Processing 49

iii

CONTENTS

5.3 Analog CMOS . 50
5.4 Biomolecular . 52

5.4.1 DNA-computing . 52
5.4.2 Molecular-Tile Computing 53
5.4.3 Molecular Computing 55
5.4.4 Neuromorphic Computing 56

5.5 Quantum Technologies . 57
6 Potential Follow-On Work: Deep Dives 59

6.1 Classical Digital Computation 60
6.1.1 New Memory Technology for SRAM 60
6.1.2 Scale CMOS to its Practical Limit. 60
6.1.3 Device Technology Alternative to CMOS. 61
6.1.4 Extend CMOS to a Heterogenous Integration Platform 61
6.1.5 Develop New Functional Cores. 62
6.1.6 Theory and Practice of Processor-in-Memory Computing . . . 62

6.2 Neuro-Inspired Computation 63
6.2.1 Silicon-Compatible Devices for Neuron, Axon, Synapse, and

Dendrite . 63
6.2.2 Interdisciplinary Understanding of Neural Structure, Computa-

tional Model, and Algorithms. 64
6.3 Analog Computation . 64

6.3.1 Role of Analog Computing. 64
6.3.2 Interaction of Analog Computation with Other Computation Styles

64
7 Abbreviations . 65
8 Acknowledgments . 67

References . 69

iv

1 Executive Summary

We have broadly surveyed the computing landscape as it relates to the problems
of interest to the intelligence community (IC). We did not find a single alternative
computing technology (ACT) that is universally applicable to the wide range of IC
applications, although particular solutions are suited to individual application classes.
We therefore recommend that the IC consider an application-driven, holistic design
approach that spans a broad range of technologies and computational models. The
application classes we considered were discrete math, big data, distributed sensing and
processing, scientific/numerical simulation, and robotics/autonomous systems. Holistic
design could extend beyond a single technology to include integration of multiple,
heterogeneous ACTs as needed to meet application/architecture requirements.

To meet mission requirements, the IC has been a leader in the development and
deployment of computing and computing technologies. The computing design space
in which the IC has worked runs the gamut from employing commodity components
and systems to advanced special-purpose devices (SPDs). For those missions where
commodity components have limited utility, the IC must question the implicit assump-
tions underlying current computing system design choices. This questioning must
extend deeply, even to the fundamental model of computation used. Instead of asking
which complementary metal oxide semiconductor (CMOS) chip we should use for a
problem, we should ask about the chip we should design. Instead of what digital
means of computation should we use, we might ask if we should even be solving this
problem digitally. Clearly, a practice of routinely returning to fundamental questions
bristles against practical concerns (such as schedule and cost), but it is the approach
most likely to meet some of the unique, future needs of the IC.

The survey of the computing landscape documented in this paper extends far
beyond the traditional classical digital style of computation and conventional digital
CMOS technology. It even extends beyond quantum computing. By style or model of
computation, we refer to how the solution to a given problem is obtained on a given
computing system. The classical digital model of computation is embodied in what
we might call conventional CMOS computing, ranging from the processing done in
smart phones to the number-crunching done in high-performance computing (HPC)
clusters. In the classical digital model data are represented digitally, and solutions to
problems are computed via algorithms in a series of discrete steps. By contrast, in
analog computing, data are represented by continuous values, and the solution to a
problem is computed through the evolution of a dynamical system.

In the following paragraph, we describe the four fundamental styles of computing
we considered: the classical digital, neuro-inspired, analog, and quantum digital. For
each style of computing, we also discuss the technologies that may be used to realize
a computing platform that solves problems in that style. We distinguish between

1

1 EXECUTIVE SUMMARY

technologies and platforms. For example, CMOS is a technology, while digital CMOS,
with its associated infrastructure (including, for example, design and fabrication
tools, and related technologies like dynamic random-access memory (DRAM)), is a
device platform for realizing classical digital computing. In general, a device platform
comprises the state variable (the means used to represent the computational unit),
the material (the stuff that hosts the state variable), and the device (the means to
manipulate state).

Classical Digital Computing: Classical digital computing, in which bits repre-
sent information and computation corresponds to sequences of elementary logic
operations, dominates computing today. Conventional digital computing has, indeed,
dominated the computer engineering and computer science communities for decades.
We considered three platforms for conventional digital computing: CMOS and Beyond
CMOS, superconducting, and biomolecular.

The CMOS and Beyond CMOS platform has been, and will continue to be, the
dominant platform even after the CMOS transistor has reached its practical scaling
limit, around 2024. Today, the number of transistors manufactured on a single
CMOS 300-mm diameter wafer can approach one trillion. Other than biological
processes, no other manufacturing process can come close to that low cost of compute
element production. Industry will support the advancement of CMOS at the device
(e.g., transistor) level throughout that time frame, with little need for United States
Government (USG) investment. USG investment at the systems level (chip design
through algorithm), however, can leverage industry’s massive underlying investment
and thus may have considerable impact. The two prime areas for USG investment
in the CMOS and Beyond CMOS platform are holistic design and the power costs
of high-bandwidth, low-latency communication. Most of the energy dissipation in
CMOS is entailed in moving bits, and holistic designs that innovate across the
spectrum of hardware to algorithm will be needed to obtain more efficient use of
communication resources. Considering the entire technology stack can drive solutions
that are optimized over the whole.

The cryogenic superconducting platform offers the potential of increasing compu-
tational power efficiency by 10×–1,000×. CMOS and Josephson junction supercon-
ducting logic elements inherently draw comparable amounts of power, but the latter
enjoys a substantial advantage in needing to expend almost no energy to move bits
around. Applications that are communication intensive, which is the case for many
of today’s IC applications, will benefit the most from superconducting technology.
USG investment will be required to move this platform forward through research to
advanced development. Without eventual commercial adoption of superconducting
technology, the USG will have to shoulder the burden of scaling the technology to
increase performance, possibly a cost too great to bear alone.

The biomolecular platform offers the potential for power-efficient computing oper-
ating at the molecular level. While solutions to small instances of computationally hard
problems have been demonstrated in this technology, extant biomolecular techniques

2

1 EXECUTIVE SUMMARY

have poor scalability and specificity. The molecular tile approach provides for more
control over the calculation but suffers from errors unless the speed of the calculation
proceeds slowly. For these reasons this platform has little value for computationally
hard IC problems. The biomolecular research community is currently exploring simple
logic operations using a number of diverse mechanisms in vitro and in vivo, targeted
not at complex calculations but rather for control of natural and synthetic biological
systems. Likely application areas for these results include medicine, energy production,
and environmental engineering. We recommend no IC investment at present though
other parts of the USG, notably National Institute of Health (NIH) and National
Science Foundation (NSF) should consider investing. The IC should monitor this area
for future applicability to problems of interest.

Neuro-Inspired Computing: Neuro-inspired computing is expected to have
superior performance for problems involving discrimination and pattern recognition, for
example, with applicability to processing big data. This style of computing attempts
to emulate the computation in animals with the goal of providing similar capabilities in
engineered systems. It is motivated by the recognition that there is no transistor-based
classical digital architecture, either now or foreseen for the future, that can reproduce
the capabilities of the human brain while dissipating only 15 W.

The neuro-inspired compute model is currently a work in progress because we
have only a limited understanding of how the brain works. Today’s neuro-inspired
architectures and algorithms extrapolate generously from a minimal grounding in
biology. Maturing these approaches will require better characterization of the brain’s
processes at both the biological and algorithmic levels. We recommend an emphasis
on interdisciplinary research strongly rooted in biology and computer science and
complemented by other relevant disciplines.

We considered two platforms for neuro-inspired computing: analog CMOS and
analog biomolecular. The CMOS platform is amply suited for realizing neuron-like
devices, but it is missing an efficient synapse to be used for distributed memory and
coupling neurons. Biomolecular technology, particularly in the context of synthetic
biology, is at present too immature to realize neuro-inspired computing, but does offer
a potentially interesting approach for the long term. Although the drivers of synthetic
biology are not computation, this area should be watched for a potentially disruptive
impact on neuro-inspired computing.

Analog Computing: Analog computing represents information as real-valued
quantities, with computation proceeding via a set of differential equations of motion.
Analog computation has low precision, making it undesirable for computations
requiring exact results. Programming an analog system consists of mapping the
problem of interest onto a dynamical system; for example, it appears to be possible
to solve Boolean equations—an application of interest to the IC—by mapping the
problem onto a system whose solution is given by the solution of differential equations.
That done, it is unclear whether the most efficient place to solve those differential
equations is on an analog computer.

3

1 EXECUTIVE SUMMARY

Analog computing is reasonably mature, and a variety of technologies, ranging from
analog CMOS to the extreme of analog computation in cells, present feasible platforms.
The “programming” and set-up of the analog computation can be challenging even
when running studies of similar problems. The benefits of analog computing need,
however, to be established before investing in extensions to the computational platform.
We recommend a small research effort to explore mappings between IC hard problems
and dynamical systems.

Quantum Digital Computing: Quantum digital computing has the potential to
reduce computational complexity for select problems. Shor’s algorithm gives a way to
shrink the number of required operations (from exponential to polynomial) for integer
factoring and is the main motivation behind the desire to build a quantum computer.
Simply put, a quantum computer is more powerful than a classical computer when
it comes to factoring because, in principle, it has to do less work. Shor’s algorithm
is a particular application of a more general capability of quantum computing—a
limited solution of the hidden subgroup problem, and this application has far reaching
implications.

Quantum computing has explored well over a dozen candidate material systems
over the last 25 years. Trapped ions, superconducting qubits, and electron-spin in
solid-state materials have survived and continue to progress. Despite this investment,
major challenges persist. A logical qubit, (i.e., one whose integrity is guaranteed
for the duration of a calculation) remains elusive. Also, practical systems will likely
comprise millions of qubits, which will need to be able to co-exist on that scale in
an architecture. A worthy intermediate goal, therefore, is a scalable logical qubit.
Obtaining such a qubit will require approaching the problem not only from the
perspective of a technology that makes the best single qubit, but also asking what
technology best supports system requirements for the desired capability. In other
words, the solution should be holistically designed for a specific application. Adopting
such an approach begins to move us away from a technology-centric perspective and
towards a platform-centric perspective for quantum computing.

Holistic design may work to focus research to useful classes of technologies. Mean-
while, no technology that is capable of scaling to large numbers of logical qubits and
adequately stable to complete a calculation has been identified. Mission capabili-
ties implemented by quantum digital computing must be weighed against the likely
substantial research investment required.

Conclusion: As computing moves into the future, solutions will necessarily become
more specialized to the problem at hand. The more the solution space is expanded, the
greater the potential for high-performance solutions but also the more investment that
will be required. No single approach that covers the range of computational problems
of interest. Because computational capabilities result in operational capabilities for
the IC, investing in multiple approaches or in one approach at the expense of others
is fundamentally a strategic decision that has long-term implications. Any strategic
investment decision needs to carefully consider operational needs and tradeoffs.

4

2 Findings and Recommendations

2.1 Global Recommendations
Finding: With power, space, and cooling as forcing functions, computational power
efficiency will become ever more important. Application-specific solutions, on which
the IC has historically relied for a leg up, will be even more important for the compu-
tationally hard problems of the future. Maximum efficiencies will come from the right
choice of computational style and platform.
Recommendation (G-1): Expand the design space to include a more diverse set of
computational models and platforms. The IC, to preserve its edge, should extend the
concept of application specificity to encompass computational styles and platforms.
Innovation should not be restricted to conventional classical digital computational
models realized on limited CMOS platforms. Pairing a problem to the right combina-
tion of style and platform, for example, factoring integers on a quantum computer, or
using neuro-inspired processing for pattern recognition can lead to enormous gains in
efficiency over conventional approaches. Hybrid systems that mix more than one style,
such as embedding analog computation for certain mathematical operations, may also
provide a benefit.

The dominance of digital computation has displaced analog computation histori-
cally, and this dominance presents a barrier to fully establishing alternative compu-
tational styles, such as neuro-inspired computation and the supporting hardware.
Progress is further compounded by the need for these alternative computational styles
to exceed capabilities of a digital solution. This situation is appreciated and several
efforts are under way that address these issue. Substantial progress will require a
sustained long-term and strategic commitment to these alternative computational
styles.

Finding: A potentially viable alternative technology to CMOS (and its projected
commercial evolution) for general-purpose, classical digital computation is supercon-
ducting, which offers the potential for an estimated one to three orders of magnitude
reduction in electrical power, though this reduction in power is far from being realized.
The other ACT candidates that emerged from the study—specifically neuro-inspired,
analog, and quantum—represent not new technologies, but different computation
styles. Each could be implemented via a range of substrates. The relevance of quantum
computing to the IC is undisputed, but the potential of the other computational
styles to serve IC needs is not as well understood. Neuro-inspired computing should
be efficient for discrimination and pattern matching with applicability to big data.
Analog computing has the potential of efficiently solving a set of first-order differential
equations. ACTs may offer significant potential; however, much yet needs to be
learned, and that research will require investment.
Recommendation (G-2): Algorithms are key. Historically, the big leaps in our

5

2 FINDINGS AND RECOMMENDATIONS

ability to factor numbers have come from new algorithms, with incremental assistance
from progress in microelectronics. Improved algorithms have also have made important
contributions in other areas, such as signal processing and machine learning. Like
quantum computing, neuro-inspired and analog computing are attractive for their
potential to stimulate the recasting of hard problems into forms that are more readily
soluble. Also, just as efforts to realize quantum computing have required the joint
contributions of mathematicians, computer scientists and physicists, the IC will need
to mount interdisciplinary efforts to understand the implications of these other new
computational models for its problem set.

Finding: The International Technology Roadmap for Semiconductors (ITRS) roadmap
indicates the viability of CMOS for another 20 years. Industry is investing nearly $50
billion yearly to sustain its trajectory. The CMOS platform will continue to advance
even after CMOS reaches its practical scaling limit.
Recommendation (G-3): Know where to set the bar. To determine whether a
candidate merits serious consideration as an alternate computing technology, the IC
should compare its likely performance with the projections for CMOS on the ITRS
roadmap.

Finding: No single alternative to CMOS can meet the ICs full range of computational
needs of the IC. Quantum computing, for example, is superior for factoring integers,
but neuro-inspired computation is superior for pattern matching,
Recommendation (G-4): Consider these preliminary findings. This study has
identified benefits and limitations of ACTs. Since substantial investment will be
needed to bring any individual ACT to the level of practicability, a detailed study of
critical capabilities and gaps should be done before selecting or eliminating an ACT
from consideration.

2.2 Compute model-specific solutions
2.2.1 Classical Digital Computing
Finding: The ITRS roadmap has a comprehensive strategy for emerging research
material and devices. It has also defined 5 difficult challenges in the areas of memory,
CMOS, Beyond CMOS, and heterogenous integration to focus the research. It is not
clear that USG investment in this area will make a difference. Though the USG should
closely monitor this area, and may need to make strategic investment, particularly in
areas of design and architecture.
Recommendation (C-1): Do not invest in the CMOS Device Platform. This
investment is already being adequately covered by industry. The focus of the IC
should be on how to more effectively use the CMOS Device Platform for increasing
computational efficiency through better design.

Finding: The imperative to keep costs low will drive industry to mass production of
a limited set of standard central processing units (CPUs), memory, and other chips.
These choices artificially constrain developer creativity and the computational model.

6

2 FINDINGS AND RECOMMENDATIONS

Recommendation (C-2): Pursue holistic co-design. To expand the application
design space that CMOS can support, the USG should seek innovation throughout
the CMOS technology stack. A holistic co-design paradigm will provide an efficient
way to implement new algorithm research. Custom chip architectures may permit
surprising efficiency gains, especially when designed along with the algorithm. The IC
and USG should plan to leverage industry’s scheduled advances but should also invest
in expanding the possibilities for CMOS-based designs beyond those that will come
from industry.

Finding: Moving bits in CMOS, regardless of origin or destination, is inefficient, and
energy costs are not projected to decrease much in the future. Since these costs rapidly
increase with distance from the CPU, communication-intensive applications, such
as graph algorithms, scale poorly. The von Neumann architecture, where data and
program are stored in local memory and shuttled to processor as needed, exacerbates
the problem.
Recommendation (C-3): Break the von Neumann barrier. The high cost of commu-
nication in CMOS has gradually closed off solution options and constrained algorithmic
creativity. The USG should go after this problem aggressively, seeking ways to lower
the cost to move bits, to move fewer bits, and/or to reduce the distance the bits must
travel. Solutions may involve transport technology, machine architecture, and algo-
rithms. Likely, all three will be important, though transport technology is primarily a
concern of industry. Algorithm research and subsequent holistic co-design will be the
way to select which combinations of technologies to pursue.

Finding: Besides being more energy efficient, superconducting computers are poten-
tially faster, with greater computational efficiency than conventional ones based on a
CMOS platform; however, they also present the disadvantage of operating at 4 K. At
present, superconducting is lacking a low-energy, high-performance memory, though
several approaches appear promising. Many of the architectural principles developed
for CMOS are applicable to the superconducting platform.
Recommendation (C-4): Experimentally demonstrate the operational advantage of
the superconducting platform. Implement superconducting logic in the context of an
architecture that can allow for a direct comparison with CMOS. Doing so will require
addressing the current deficiencies in cryogenic memory. The Cryogenic Computing
Complexity (C3) program of the Intelligence Advanced Research Project Activity
(IARPA) is on the right track to implement this recommendation.

Finding: Superconducting logic has the advantage over CMOS for bit transport,
since moving bits on superconducting lines entails no energy cost (some cost is still
incurred moving bits into the processor from the outside). Communications-intensive
algorithms should therefore operate more efficiently in superconducting computers
than they would in CMOS-based platforms, where most of the energy is expended
moving bits.
Recommendation (C-5): Explore superconducting communications-intensive machine
architectures. Select several communications-intensive applications of interest to serve

7

2 FINDINGS AND RECOMMENDATIONS

as targets for application-specific superconducting machine architectures. Use initial
computational efficiency estimates for these designs to drive subsequent technology
development.

Finding: Superconducting computers generate significantly less heat than CMOS
ones and so can provide a hospitable environment to host three-dimensional (3D)
stacked-chip architectures, which are otherwise hard to cool. Achieving the full
potential of this technology will require reducing superconducting circuit elements to
smaller sizes to enable scaling and developing a novel approach to reliability that can
ensure continuous operation of a 3D structure at 4 K.
Recommendation (C-6): Produce a roadmap for superconducting technology. The
USG should charter a roadmap similar in intent to the ITRS, focused on the critical
issues and challenges inherent in scaling to a smaller feature size. Publication of such
a document will broadcast serious interest on the part of the government and suggest
a way forward to the nascent superconducting community.

Finding: DNA computing has little practical value for tackling NP-hard problems.
gates,ally, a brute force technique, the size of the space it can search is limited by the
number of DNA molecules that can be simultaneously held in solution. While the
technology does offer a significant speed-up over conventional computing for exhaus-
tively searching small spaces, without the ability to scale to larger spaces, interesting
problems lie beyond its reach. The molecular-tile approach gives DNA computing a
way to implement logic gates; however, it has serious limitations. Instructions execute
whenever they are triggered, and there is no easy way to evaluate them in a particular
order. Also, to avoid contamination by stray chemical reactions, complex calculations
are constrained to proceed very slowly.

Early optimism that molecular computing could offer a general-purpose computing
technology using a biological substrate has given way to recognition that it will likely
have utility only in a biological context. Most current research is focused on using
molecular computing to address computational issues associated with enhancing or
adding functionality to a biological system. The biological interactions are slow,
occurring on the scale of minutes to days, but they can be exceptionally low power.
Recommendation (C-7): The IC should not invest in biomolecular technology at
this time. Biomolecular technology is not well suited for hard calculations. Molecular
tile calculations are error prone and require slow growth rates to minimize errors.
Computation based on biological processes cannot today implement either sophisticated
decision logic or instruction sequences. Biomolecular computing will continue to
mature without our investment for applications in medicine, fuel production, and
environmental engineering. The field should be tracked for developments that might
have a potential disruptive impact on general computation.

8

2 FINDINGS AND RECOMMENDATIONS

2.2.2 Neuro-Inspired
Finding: Neuro-inspired hardware computing approaches, despite their promise,
are not solving problems of interest. In contrast, neuro-inspired machine learning
approaches using software have shown usefulness and scalability, but they require too
much digital computation and, therefore, too much compute time and power.
Recommendation (N-1): Guide hardware development with lessons from machine
learning and neuroscience. Neuro-inspired computing suffers from a lack about
understanding of how computation really proceeds in the brain. The USG should
sponsor research that uncovers and is informed by the anatomical and biomolecular
processes that make the brain so efficient. New neuromorphic hardware design efforts
should incorporate findings from machine learning.

Finding: Neuromorphic computing is characterized by simple local processing in
the “neurons,” whose output affects a nearby subset of the “synapses” that form
the application’s distributed memory. Data do not move long distances and, there-
fore, computation has the potential to be extremely energy efficient. Applications
in surveillance and robotics may be able to take advantage of this style of computation.
Recommendation (N-2): Fund hardware research to create energy-efficient “synapses”
that can be integrated with CMOS. Creating this sort of memory architecture may be
a stepping stone on the path to building a scalable neuro-inspired processor for larger
problems. Current candidate chip-level building blocks are inadequate. Floating-gate
structures are too large and require too much energy for updating, and memristors
have a high failure rate.

Finding: Neuromorphic computing uses local learning algorithms to update the
“synapse” values in response to data patterns at the periphery of the device. Rules
based on spike-timing dependent plasticity (STDP) mimic biological synapses and
can encode temporal patterns. Machine learning algorithms implemented in software
are not always neuromorphic and do not generally account for temporal patterns
naturally.
Recommendation (N-3): Fund research on hardware-friendly temporal learning
algorithms. This research should be done in concert with hardware architecture
research while being mindful of the progress being made in neuromorphic-style deep
machine learning algorithms. Algorithms, architecture, and representations can draw
inspiration from and guide hardware development in a co-design process.

Finding: Biomolecular methods for computing have not yet been used to create
neuro-inspired architectures, but the self-assembly properties of DNA may have appli-
cation to neuro-inspired computational constructs. The field of synthetic biology is
advancing rapidly and may also create opportunities for advances in neuro-inspired
architectures. Drivers for these technologies will come from the areas of medicine,
energy production, and environmental engineering.
Recommendation (N-4): Watch synthetic biology advances for possible break-
throughs in creating neuro-inspired computers. Biology may produce potentially
disruptive technologies for neuromorphic computation.

9

2 FINDINGS AND RECOMMENDATIONS

2.2.3 Analog
Finding: Analog computing is not well suited to traditional IC problems (like
factoring) that require bit-precise calculation or high dynamic range. Analog computing
is best suited to problems that allow for approximate solutions and may offer improved
energy efficiency and speed over digital computing for some of those problems. It may
have a niche role for accelerating the solution of IC problems that can be represented
in terms of or modeled by physical systems.
Recommendation (A-1): Investigate the mapping of IC problems to dynamical
systems. IC problems may have components that can be mapped to dynamical
systems and could therefore be accelerated by analog computing. One real-world
example is Boolean satisfiability, an optimization technique for which a dynamical
systems approach with benefits over traditional algorithms has been demonstrated in
principle [44].

2.2.4 Quantum Computing
Finding: Shor’s algorithm for factoring integers has served as the overarching motiva-
tion for practical quantum computing to date. With the possible exception of quantum
simulation, the other known quantum algorithms are primarily of theoretical interest or
do not offer a sufficient reduction in calculation complexity to merit investment. Given
the theoretical power of a computing model not limited to binary states, the dearth of
interesting quantum computing algorithms is surprising and likely results from too
much focus on the quantum circuit model. Our attempts to force quantum mechanics
into a familiar computing construct may be limiting our ability to understand quantum
computation at an intuitive level.
Recommendation (Q-1): Broaden scope of quantum models of computation and
algorithms. Pursue basic research is aimed at expanding our understanding of compu-
tation in quantum systems beyond the digital circuit model. Without being too
restrictive, focus attention on real problems where quantum computing can offer
substantial improvement over the best classical computing approaches. Widening
the applicability of quantum computing will increase industry’s interest in sharing a
portion of its development cost.

Finding: We have been on a 25-year quest for a logical qubit and are still a long
way from achieving that goal. Since quantum states are fragile and protecting
them from corruption by the surrounding environment is challenging, preserving
computational integrity appears to hinge on effective quantum error correction. Today,
some approaches are better than others, but we have no theory to say how much
better they can get.
Recommendation (Q-2): Demonstrate a logical qubit suitable for scalable quantum
computation. Focus efforts towards a practical logical qubit, that is, for which the
quantum state can be maintained for the duration of the calculation and that can
scale to support large computations of interest. Pursue a two-pronged strategy to

10

2 FINDINGS AND RECOMMENDATIONS

advance understanding of quantum error correction and aggressively seek a candidate
physical qubit technology that is likely to meet scalability requirements.

Finding: It is no more likely that we will be able to have built a practical quantum
computer from many of today’s candidate qubit technologies than we could have
built today’s high-performance computers from vacuum tubes. The development of
a quantum computer cannot be a linear process from qubit to system. We need to
better understand the implications on system architecture of candidate qubit systems.
To this end, there needs to be a symbiotic effort between qubit technology and system
architecture for a scalable quantum computer. Performance stems from achieving
balance over the whole system—from qubit to algorithm.
Recommendation (Q-3): Develop candidate system-level architecture for a capa-
bility quantum computer. A capability quantum computer is one that delivers a
computational capability of interest to the IC and is scalable. In other words, it must
have a useful performance threshold and be readily extensible to larger problems
of the same type. This architecture effort needs to be symbiotic with the effort for
demonstrating a logical qubit. Our current understanding of the qubit should drive
the architecture and the architecture should drive the required performance of the
qubit. Research needs to be application specific and consider the scalability of the
calculation. The focus should be on achieving balance across the design space from
qubit through algorithm.

11

2 FINDINGS AND RECOMMENDATIONS

Table 2.1: This table provides a summary of all the recommendations mentioned in this
section. Additional detail can be found in the next chapter.

C
om

pu
tin

g
St

yl
e

D
ev

ic
e

Pl
at

fo
rm

St
at

e
M

at
er

ia
l D

ev
ic

e
C

om
po

ne
nt

Ar
ch

ite
ct

ur
e

N
od

e
Ar

ch
ite

ct
ur

e
Sy

st
em

Ar
ch

ite
ct

ur
e

Pr
og

ra
m

m
in

g
M

od
el

Al
go

rit
hm

Q
ua

nt
um

D

ig
ita

l

G
aA

s
Q

ua
nt

um

do
t

Q
-2

: D
em

on
st

ra
te

 a

lo
gi

ca
l q

ub
it

Q
-2

: D
em

on
st

ra
te

 a

lo
gi

ca
l q

ub
it

Q
-2

: D
em

on
st

ra
te

 a

lo
gi

ca
l q

ub
it

Q
-3

: D
ev

el
op

 c
an

di
da

te
 s

ys
te

m
 le

ve
l

ar
ch

ite
ct

ur
es

Q
-3

: D
ev

el
op

 c
an

di
da

te
 s

ys
te

m
 le

ve
l

ar
ch

ite
ct

ur
es

Q
-3

: D
ev

el
op

 c
an

di
da

te
 s

ys
te

m
 le

ve
l

ar
ch

ite
ct

ur
es

Q
ua

nt
um

D

ig
ita

l

Si
-P

ho
sp

ho
ro

us

Q
-2

: D
em

on
st

ra
te

 a

lo
gi

ca
l q

ub
it

Q
-2

: D
em

on
st

ra
te

 a

lo
gi

ca
l q

ub
it

Q
-2

: D
em

on
st

ra
te

 a

lo
gi

ca
l q

ub
it

Q
-3

: D
ev

el
op

 c
an

di
da

te
 s

ys
te

m
 le

ve
l

ar
ch

ite
ct

ur
es

Q
-3

: D
ev

el
op

 c
an

di
da

te
 s

ys
te

m
 le

ve
l

ar
ch

ite
ct

ur
es

Q
-3

: D
ev

el
op

 c
an

di
da

te
 s

ys
te

m
 le

ve
l

ar
ch

ite
ct

ur
es

Q
ua

nt
um

D

ig
ita

l
Si

 Q
ua

nt
um

 d
ot

Q
-2

: D
em

on
st

ra
te

 a

lo
gi

ca
l q

ub
it

Q
-2

: D
em

on
st

ra
te

 a

lo
gi

ca
l q

ub
it

Q
-2

: D
em

on
st

ra
te

 a

lo
gi

ca
l q

ub
it

Q
-3

: D
ev

el
op

 c
an

di
da

te
 s

ys
te

m
 le

ve
l

ar
ch

ite
ct

ur
es

Q
-3

: D
ev

el
op

 c
an

di
da

te
 s

ys
te

m
 le

ve
l

ar
ch

ite
ct

ur
es

Q
-3

: D
ev

el
op

 c
an

di
da

te
 s

ys
te

m
 le

ve
l

ar
ch

ite
ct

ur
es

Q
ua

nt
um

D

ig
ita

l
Su

pe
rc

on
du

ct
in

g

Q
-2

: D
em

on
st

ra
te

 a

lo
gi

ca
l q

ub
it

Q
-2

: D
em

on
st

ra
te

 a

lo
gi

ca
l q

ub
it

Q
-2

: D
em

on
st

ra
te

 a

lo
gi

ca
l q

ub
it

Q
-3

: D
ev

el
op

 c
an

di
da

te
 s

ys
te

m
 le

ve
l

ar
ch

ite
ct

ur
es

Q
-3

: D
ev

el
op

 c
an

di
da

te
 s

ys
te

m
 le

ve
l

ar
ch

ite
ct

ur
es

Q
-3

: D
ev

el
op

 c
an

di
da

te
 s

ys
te

m
 le

ve
l

ar
ch

ite
ct

ur
es

Q
ua

nt
um

D

ig
ita

l

Tr
ap

pe
d-

io
n

Q
-2

: D
em

on
st

ra
te

 a

lo
gi

ca
l q

ub
it

Q
-2

: D
em

on
st

ra
te

 a

lo
gi

ca
l q

ub
it

Q
-2

: D
em

on
st

ra
te

 a

lo
gi

ca
l q

ub
it

Q
-3

: D
ev

el
op

 c
an

di
da

te
 s

ys
te

m
 le

ve
l

ar
ch

ite
ct

ur
es

Q
-3

: D
ev

el
op

 c
an

di
da

te
 s

ys
te

m
 le

ve
l

ar
ch

ite
ct

ur
es

Q
-3

: D
ev

el
op

 c
an

di
da

te
 s

ys
te

m
 le

ve
l

ar
ch

ite
ct

ur
es

An
al

og

An
al

og

Bi
om

ol
ec

ul
ar

M
ix

ed
-s

ig
na

l
Bi

om
ol

ec
ul

ar
An

al
og

An
al

og
 C

M
O

S
M

ix
ed

-s
ig

na
l C

M
O

S
A-

1:
 M

ap

pr
ob

le
m

s

N
eu

ro
-

in
sp

ire
d

An
al

og

Bi
om

ol
ec

ul
ar

M
ix

ed
-s

ig
na

l
Bi

om
ol

ec
ul

ar

N
-4

: I
C

 s
ho

ul
d

w
at

ch
 fo

r d
is

ru
pt

iv
e

ap
pl

ic
at

io
n

to
 c

om
pu

tin
g

N
-4

: I
C

 s
ho

ul
d

w
at

ch
 fo

r d
is

ru
pt

iv
e

ap
pl

ic
at

io
n

to
 c

om
pu

tin
g

N
-4

: I
C

 s
ho

ul
d

w
at

ch
 fo

r d
is

ru
pt

iv
e

ap
pl

ic
at

io
n

to
 c

om
pu

tin
g

N
-4

: I
C

 s
ho

ul
d

w
at

ch
 fo

r d
is

ru
pt

iv
e

ap
pl

ic
at

io
n

to
 c

om
pu

tin
g

N
eu

ro
-

in
sp

ire
d

An
al

og
 C

M
O

S
M

ix
ed

-s
ig

na
l C

M
O

S
N

-1
: G

ui
de

 h
ar

dw
ar

e
fro

m
 a

lg
or

ith
m

 a
nd

bi

ol
og

y
N

-2
: D

ev
el

op
 e

ne
rg

y-
ef

fic
ie

nt
 s

yn
ap

se

N
-1

: G
ui

de
 h

ar
dw

ar
e

fro
m

 a
lg

or
ith

m
 a

nd

bi
ol

og
y

N
-2

: D
ev

el
op

 e
ne

rg
y-

ef
fic

ie
nt

 s
yn

ap
se

N
-1

: G
ui

de
 h

ar
dw

ar
e

fro
m

 a
lg

or
ith

m
 a

nd

bi
ol

og
y

N
-2

: D
ev

el
op

 e
ne

rg
y-

ef
fic

ie
nt

 s
yn

ap
se

N
-1

: G
ui

de
 h

ar
dw

ar
e

fro
m

 a
lg

or
ith

m
 a

nd

bi
ol

og
y

N
-2

: D
ev

el
op

 e
ne

rg
y-

ef
fic

ie
nt

 s
yn

ap
se

N
-1

: N
eu

ro
 a

lg
or

ith
m

s
N

-3
: T

em
po

ra
l l

ea
rn

in
g

N
-1

: N
eu

ro
 a

lg
or

ith
m

s
N

-3
: T

em
po

ra
l l

ea
rn

in
g

C
la

ss
ic

al

D
ig

ita
l

Bi
om

ol
ec

ul
ar

C
-7

: I
C

 s
ho

ul
d

w
at

ch
 fo

r d
is

ru
pt

iv
e

ap
pl

ic
at

io
n

to
 c

om
pu

tin
g

C
-7

: I
C

 s
ho

ul
d

w
at

ch
 fo

r d
is

ru
pt

iv
e

ap
pl

ic
at

io
n

to
 c

om
pu

tin
g

C
-7

: I
C

 s
ho

ul
d

w
at

ch
 fo

r d
is

ru
pt

iv
e

ap
pl

ic
at

io
n

to
 c

om
pu

tin
g

C
-7

: I
C

 s
ho

ul
d

w
at

ch
 fo

r d
is

ru
pt

iv
e

ap
pl

ic
at

io
n

to
 c

om
pu

tin
g

C
la

ss
ic

al

D
ig

ita
l

Su
pe

rc
on

du
ct

in
g

C
-4

: D
em

on
st

ra
te

pe

rf
or

m
an

ce
 a

dv
an

ta
ge

C
-6

: I
TR

S-
lik

e
ro

ad
m

ap

fo
r s

up
er

co
nd

uc
tin

g

C
-4

: D
em

on
st

ra
te

pe

rf
or

m
an

ce
 a

dv
an

ta
ge

C
-6

: I
TR

S-
lik

e
ro

ad
m

ap

fo
r s

up
er

co
nd

uc
tin

g

C
-4

: D
em

on
st

ra
te

pe

rf
or

m
an

ce
 a

dv
an

ta
ge

C
-6

: I
TR

S-
lik

e
ro

ad
m

ap

fo
r s

up
er

co
nd

uc
tin

g

C
-5

: E
xp

lo
re

 c
om

m
un

ic
at

io
ns

-in
te

ns
iv

e
m

ac
hi

ne
 a

rc
hi

te
ct

ur
es

C
-5

: E
xp

lo
re

 c
om

m
un

ic
at

io
ns

-in
te

ns
iv

e
m

ac
hi

ne
 a

rc
hi

te
ct

ur
es

C
-5

: E
xp

lo
re

 c
om

m
un

ic
at

io
ns

-in
te

ns
iv

e
m

ac
hi

ne
 a

rc
hi

te
ct

ur
es

C
-5

: E
xp

lo
re

 c
om

m
un

ic
at

io
ns

-in
te

ns
iv

e
m

ac
hi

ne
 a

rc
hi

te
ct

ur
es

C
-5

: E
xp

lo
re

 c
om

m
un

ic
at

io
ns

-in
te

ns
iv

e
m

ac
hi

ne
 a

rc
hi

te
ct

ur
es

C
la

ss
ic

al

D
ig

ita
l

Be
yo

nd
 C

M
O

S
C

-1
: I

TR
S

C
ha

lle
ng

es

an
d

Be
yo

nd
 C

M
O

S
C

-1
: I

TR
S

C
ha

lle
ng

es

an
d

Be
yo

nd
 C

M
O

S
C

-1
: I

TR
S

C
ha

lle
ng

es

an
d

Be
yo

nd
 C

M
O

S
C

-2
: P

ur
su

e
ho

lis
tic

 d
es

ig
n

C
-3

: B
re

ak
 th

e
vo

n
N

eu
m

an
n

ba
rr

ie
r

C
-2

: P
ur

su
e

ho
lis

tic
 d

es
ig

n
C

-3
: B

re
ak

 th
e

vo
n

N
eu

m
an

n
ba

rr
ie

r
C

-2
: P

ur
su

e
ho

lis
tic

 d
es

ig
n

C
-3

: B
re

ak
 th

e
vo

n
N

eu
m

an
n

ba
rr

ie
r

C
-2

: P
ur

su
e

ho
lis

tic
 d

es
ig

n
C

-3
: B

re
ak

 th
e

vo
n

N
eu

m
an

n
ba

rr
ie

r
C

-2
: P

ur
su

e
ho

lis
tic

 d
es

ig
n

C
-3

: B
re

ak
 th

e
vo

n
N

eu
m

an
n

ba
rr

ie
r

C
la

ss
ic

al

D
ig

ita
l

D
ig

ita
l C

M
O

S
C

-1
: I

TR
S

C
ha

lle
ng

es

an
d

Be
yo

nd
 C

M
O

S
C

-1
: I

TR
S

C
ha

lle
ng

es

an
d

Be
yo

nd
 C

M
O

S
C

-1
: I

TR
S

C
ha

lle
ng

es

an
d

Be
yo

nd
 C

M
O

S
C

-2
: P

ur
su

e
ho

lis
tic

 d
es

ig
n

C
-3

: B
re

ak
 th

e
vo

n
N

eu
m

an
n

ba
rr

ie
r

C
-2

: P
ur

su
e

ho
lis

tic
 d

es
ig

n
C

-3
: B

re
ak

 th
e

vo
n

N
eu

m
an

n
ba

rr
ie

r
C

-2
: P

ur
su

e
ho

lis
tic

 d
es

ig
n

C
-3

: B
re

ak
 th

e
vo

n
N

eu
m

an
n

ba
rr

ie
r

C
-2

: P
ur

su
e

ho
lis

tic
 d

es
ig

n
C

-3
: B

re
ak

 th
e

vo
n

N
eu

m
an

n
ba

rr
ie

r
C

-2
: P

ur
su

e
ho

lis
tic

 d
es

ig
n

C
-3

: B
re

ak
 th

e
vo

n
N

eu
m

an
n

ba
rr

ie
r

In
du

st
ry

IC
 In

ve
st

m
en

t
IC

 In
ve

st
m

en
t

O
th

er
 U

SG

12

3 The Big Picture

In this chapter, we describe in more detail the “big picture” as we see it. The two
chapters that follow this one contain much of the detailed analysis, with references. The
final chapter presents several topics that merit further exploration than was possible
in the study. These ideas are consistent with the findings and recommendations and
may offer a way forward, though we caution the reader that they are preliminary
and do not exhaust the possibilities. Because our foremost recommendation is the
universal adoption of holistic design for the IC’s compute problems, we start with
perhaps the best known holistic design example: Google.

3.1 An Example of Holistic Design: Google’s Compute
Infrastructure
In the early days, Google quickly realized that the scale of computing needed was
unprecedented and beyond the reach of commodity solutions. Relational databases
were not large enough and were too expensive. In addition, it had to perform a
non-standard calculation on a very large graph to determine page rank [90]. Google
took ownership of their computing problem and crafted a solution that spanned the
spectrum from algorithms to data centers. Its software approach was captured in
three applications:

• Google File System is a scalable distributed file system for large distributed
data-intensive applications. The file system was designed to be distributed over
thousands of clusters, backup data through replication, and provide optimized
sequential access for large files [50].

• MapReduce is a programming model that automatically parallelizes the compu-
tation across large-scale clusters and provides reliable operation in the presence
of faults. MapReduce was primarily designed for indexing the web and now is
part of Google’s general computing infrastructure [36].

• BigTable is a distributed storage system for managing structured data, and is
designed to scale to petabytes. It supports many applications including Google
Search and Google Maps [30].

Google designed its own data centers to house compute clusters built from
commodity components. On this end of the spectrum, Google made important
innovations. For example, it noticed that standard power supplies were much less
efficient than they could be and modified them (by removing (AC/DC) conversion
stages and installing high-efficiency voltage regulators) to be ∼25% more efficient than
typical power supplies. Google’s data centers do not have a separate storage area

13

3 THE BIG PICTURE

network, as would be the case with a commercial solution; rather all of the storage is
contained on hard drives directly connected to processing nodes. A single web query
uses hundreds of machines and completes in less than half of a second. The overall
system is exceptionally fault tolerant, by design. Google’s worldwide enterprise has 19
data centers and consumes 260 MW [52, 54].

Google thoroughly understood its problem and designed and implemented a solution
that innovated at the machine architecture and programming model levels, leveraged
the commercial market by using primarily commodity components, and could scale to
unprecedented size. For example, the metric PageRank was developed to calculate
an estimate of the number and quality of links referencing a web site. The iterative
algorithm performs the calculations in a manner that can be implemented efficiently
on a commodity cluster without expressly defining the graph structure. In addition,
by designing its own compute infrastructure, Google was able to take a green energy
approach at an early stage of the design process. Without this level of investment and
innovation, Google might not be the company it is today.

3.2 Google’s Example Applied to the IC
The example of Google’s compute needs is not unique (see, for example, the history of
D.E. Shaw’s Anton, a special-purpose computer for studying protein folding). In fact,
the example applies directly and indirectly to many government agencies, especially
the IC. The Google example is an instance of data analytics—which is an important
IC application. Moreover, the concepts embodied in the Google example should drive
government agencies and the IC to think out-of-the-box for efficient operations.

While an approach based on commodity hardware is attractive for many reasons,
it appears that a conventional CMOS-based digital approach is unlikely to scale to
meet the future needs of the IC. The three overarching challenges are

• limiting electrical power consumption through increased computational efficiency,

• decreasing the high energy cost of moving bits, regardless of the origin and
destination, and

• achieving application scalability for communication-intensive applications.

Computational efficiency is a measure of the useful work per Watt performed by a
computing system. Large systems consume up to 10 MW of power. At a cost of $1
million per year per MW, factors of 2 in energy efficiency have significant operational
and performance impacts. Almost all of this power is consumed moving data—on
chip, from local and global memory. At present, the energy cost of moving a 64-bit
operand between CPU and local memory is 50× the cost to add two floating-point
numbers. To move a 64-bit operand between CPU and global memory, the energy
cost is 200× (the cost to add the numbers). In 2020 these costs are expected to
be 80× and 700×, respectively. The consequence is that communication-intensive

14

3 THE BIG PICTURE

Intelligence	 Community	

DOD	

medicine	

business	 DOE	 NASA	

disc
ret

e m
ath

big data

dist
rib

uted
 se

nsin
g

an
d proce

ss
ing

sc
ien

tifi
c/n

umeri
ca

l

sim
ulat

ion

robotic
s/a

utonomous

sy
ste

ms

Figure 3.1: Applications of interest to the IC and others in government and the private
sector.

applications scale poorly. Although memory bandwidth and access latency are slowly
improving with time, they are not keeping up with increases in floating-point and
integer operation capacity on a chip. The result is that it is becoming increasingly
difficult to keep processors fed with data and instructions from memory [65].

Figure 3.1 shows applications of interest to the IC, the USG, and private sector.
The broad application classes are discrete math, big data, distributed sensing and
processing, scientific/numerical simulation, robotics/autonomous systems. The first
three are of primary interest to the IC.

Within the limits of classical digital computing, we examined superconducting
logic (based on Josephson junctions) and biomolecular computing and found that
neither of these approaches was capable of overcoming the three challenges across the
spectrum of application classes of interest to the IC.

Specifically, while superconducting technology eliminates the cost of moving bits
within the superconducting domain, the cost of transferring data from the outside into
the superconducting domain does dissipate energy at 4 K. Consequently, supercon-
ducting is expected to perform poorly on, for example, big data applications where the
bulk of data is streamed from the outside into the processor. What is more, the energy
cost of logic in superconducting circuits is expected to be similar to that of CMOS.

15

3 THE BIG PICTURE

On applications for which most of the data remain in the cryogenic environment,
superconducting is expected to improve computational efficiency by factors of 10–1,000
[61].

The best biomolecular algorithms for classically hard computational problems
are still exponential in resources, though, in this case, the exponential resource is
molecules and not time. Consequently, these algorithms scale poorly. Molecular tile
computing techniques, which expand the possibilities of biomolecular computing, suffer
from potentially high error rates. Optimizing the thermodynamics can reduce the
error rate but at the expense of excessively slow compute speeds.

We know of no other viable candidate technology for classical digital computation
except CMOS and the future evolution of CMOS, which is traditionally termed “Beyond
CMOS.” The ITRS describes the future of these technologies. Their development is
determined by industry, with limited ability for the government to affect direction
or timeline. While we did not survey Beyond CMOS technologies in detail, it is
clear from the ITRS that there is no silver-bullet replacement for CMOS and that
improvements will be evolutionary and incremental. At some time in the future,
these incremental and evolutionary improvements may falter and a new disruptive,
alternative computing technology will be required to move computing capabilities
forward.

Even though CMOS device technology will advance at an incremental and predictable
rate, it is less clear that we are getting all we can out of the CMOS device platform. In
many cases, the design space is artificially constrained by a host of practical concerns.
Software constraints include, for example, compatibility with the programming model.
It is constrained at the component level by having to rely excessively on commodity
chips because of the expense and time to create application-specific integrated circuits
(ASICs). It is also constrained in cost and schedule by by the acquisition cycle.
Industry invests 20% of its revenue, which was over $50 billion in 2012, in research
and development into silicon material systems. The future is clear—we need to get
more out of the CMOS device platform (see Recommendation G-3).

Based on this and other considerations that we will discuss in detail later, we recom-
mend that the IC consider an application-driven, holistic design approach that spans
a broad range of technologies and computational models—including the integration of
multiple, heterogeneous ACTs into a single system if required. Application-specific
designs are not new to either the government or industry. We have described Google’s
approach. The government—most notably The National Security Agency (NSA) and
The Department of Energy (DOE)—have a long track record of investment and innova-
tion to develop solutions for demanding computation problems (see Recommendation
G-1).

The classical digital style of computation dominates computing to such an extent
that we forget about other computation styles. Table 3.1 lists the four computational
styles considered in this report: classical digital, neuro-inspired, analog, and quantum

16

3 THE BIG PICTURE

Table 3.1: Definition of compute style. Each compute style has a characteristic unit of
information and processes to manipulate information.

Compute
Style / Model

Unit of
Information

Description Applications

Classical Digital

Neuro-inspired

Analog

Quantum Digital

bit Information is represented in
binary form and manipulated
by rule-based logic.
Computation not governed
by natural laws. Dominant
computation style.

General-purpose
computation of almost
anything. Also used for
application-specific
computing.

neuron & synapse Inspired by computational
processes in living animals.
Processing and memory are
fine grained. Connection
oriented. Capabilities are
learned, not programmed.
Computation not governed
by natural laws.

Things the brain does well:
pattern recognition,
discrimination. Potential
application to sensor
processing and big data
processing.

real variable Information is represented as
a real variable in a dynamical
system. Computation
governed by the natural laws
of the system. Analog
computation has limited
precision.

Not typically a computation
tool. Sometimes used in
control loops. Has been used
for controlling gunfire and
solving differential equations.

qubit Information is represented in
qubits in an analog form.
Computation occurs through
application of quantum
gates, which are governed by
the laws of quantum
mechanics.

Discrete math problems:
factoring integers, graph
isomorphisms, triangle
finding, element
distinctiveness. Not an
efficient general-purpose
computer.

digital. Each style has a basic unit of information and a means of computation on
that unit of information. The quantum digital circuit model, for example, represents
information in qubits—two-level quantum systems—and information is processed
via application of a sequence of quantum gates, which obey the laws of quantum
mechanics.

Computational power—that is, the ability to make efficient progress on a problem
of interest—is fundamentally related to the style in which the computer computes.
Algorithms that are hard for classical digital remain hard for all ACTs and all
machine architectures within the class of classical digital computation. Algorithms are
intimately tied to computing style. Shor’s algorithm for factoring integers is inherently
a quantum algorithm and runs efficiently only on a quantum computer. Without
an analysis of the alternatives that considers solving challenging problems over the
different computing styles, we run the risk of less than optimal solutions or possibly,
no solution at all.

A computational style that has the potential for a significant advantage over
classical digital but that cannot be reduced to practice results in little utility. Reducing
a computational style to practice requires a viable device platform. Figure 3.2
shows the relationship between Computational Style, Device Platform, and Material

17

3 THE BIG PICTURE

Computation	

Style/Model	

Device���
Platform	

Material���
Technology	

Classical Digital	

CMOS + Beyond CMOS	

Superconducting	

Digital Biomolecular	

Neuro-Inspired	

Mixed Signal CMOS	

Mixed Signal Biomolecular	

Analog	
 Quantum	

Trapped ion	

Superconducting	

Electrical-controlled���
Quantum Dot	

(Si and GaAs)	

Mixed Signal CMOS	

Mixed Signal Biomolecular	

Phosphorous-Si	

Semiconductor���
���
	

	

	

	

CMOS Transistor	

ITRS Roadmap	

Superconducting���
���
	

	

	

	

Josephson Junction	

	

Biomolecular���
���
	

	

	

	

DNA Molecule	

	

Ion���
���
���
	

	

	

Calcium	

	

Figure 3.2: Relationship between Computational Style, Platform, and Material Technology.
Colors show the relationship between the Material Technology and Device Platform.

Technology. The computational style/model is a theoretical construct that describes
how information is represented and how it can be processed. The Material Technology
is a broad technology base focused on a particular material system. The four material
systems in this figure are Semiconductor, Superconducting, Biomolecular, and Ion. A
Device Platform is the technology needed to produce the components (e.g., chips) in
the system. Each material technology provides for one or more Device Platforms.

Figure 3.3 shows the organization of a classical digital computing system. The
first two layers comprise the compute style and defines the unit of infomation, such as
the bit for the digital computation style. The next four layers comprise the Device
Platform and provide the capability of producing components for the system. For
CMOS, this is the capability of producing CPU, DRAMs, and other packaged computer
chips. The next three layers are the Machine Architecture organized as component,
compute node, and system. The compute node provides the parts (e.g., chips) to
build nodes. The compute node is, in general, capable of standalone execution of the
compute model. System level scalability calability is achieved at the system level by
interconnecting nodes.

At present, we do not innovate across the entire design space, and, consequently,
our designs are suboptimal. Our tendency is to innovate at the node and system level.
We build systems mostly out of commodity chips. Innovation at the programming
model can be limited because of the need for backward compatibility with an existing
software base. Opening up the design space is expensive and may also be prohibited

18

3 THE BIG PICTURE

Device Platform
M

achine Architecture
Style

Computational
Model/Style

Computational
Unit

State
Variable

Material

Device

Component

Node

System

Execution and
Programming
Model

Algorithm

Classical
Digital StyleStyle

Defines the intrinsic nature of
the computation and the
computational unit of informationBit

0,1
Defines the intrinsic nature of
the computation and the
computational unit of information

Charge
(electrons)

Physical entity used to represent
the computational unit

Silicon Material system for manipulating
the state variable

CMOS
transistor
DRAM cell

Devices capable of manipulating
state

CPU
DRAM
Co-Processor

Component - Computer parts
made from the Device Platform

Board

von Neumann
Architecture

Node - Assembly of components
capable of executing compute
model

Global
Interconnect

System - Collection of nodes
capable of sharing data

MPI Software stack

LINPAC
Benchmark

Application

Style
Device Platform

M
achine Architecture

Figure 3.3: Breakdown of a system from computational model through algorithm using an
HPC computer running LINPACK as an example. The first two layers define the compute
style and unit of information. The next four layers (State Variable through Device) comprise
the Device Platform, and the next three (Component through System) comprise the Machine
Architecture.

19

3 THE BIG PICTURE

because of practical acquisition constraints of schedule and cost. Opening up the design
space requires strategic planning and investment. Having to support the entire stack,
from state variable to algorithm is expensive but may not be so if extensive leveraging
of existing technology is possible. Choices are important and should be grounded in
compute style because, from this, stems computational power (see Recommendation
G-1).

Developing a Device Platform for which there is not a Material Technology base
is very expensive. Consider Semiconductor technology. In excess of $50 billion per
year is invested in this base technology, primarily focused on continuing Moore’s
law for CMOS semiconductors. It is by far the most developed of the four and its
future is described in the ITRS. This technology base is larger than just the CMOS
device platform. It also includes microelectromechanical systems (MEMS), mixed
signal chips, and system on a chip. At present it is technically mature to support
all of the compute styles with the exception of Quantum Digital. If a silicon-based
device platform is ever developed for quantum computing, it should be an extension
of the Semiconductor Material Technology base and should heavily leverage existing
capabilities of semiconductor technology (see Recommendation G-3).

Biomolecular Material Technology is not particularly mature for computing.
However, the driving applications for biomolecular are pharmaceutics and genomics,
not computing. As such, biomolecular has the potential to be a disruptive technology
for computing. The remaining two technologies we considered, superconducting and
ion, are relatively immature, and have little support from industry, although they
partially leverage Semiconductor for fabrication technology.

Figure 3.4 depicts the impact of different approaches to innovation on computational
capability. The leftmost plot is the free evolution arising from advances in Device
Platform. In the case of CMOS, this is Moore’s law driven by the excess of $50 billion
annual investment in silicon. It is perhaps slightly misleading to call it free. It is only
cost-free when a large user base supports research and development. The upward
slope characterizes the increases in compute capability arising purely from advances
in the device platform.

The middle plot in Figure 3.4 depicts innovation at the machine architecture
level and above. The most effective innovation is algorithmic innovation. Finding
a better algorithm leads to a discrete jump in capability, followed, in some cases,
by a steeper slope because of more efficient use of computational resources. Novel
and optimized machine architectures may also lead to discontinuous improvement.
Machine architecture is more costly than algorithm innovation, however.

The rightmost plot in Figure 3.4 shows the impact of a novel alternative computing
technology (orange line). In this case, there is a period of essentially no compute
capability while the novel technology matures. The technology progresses through
a scaling phase until it “takes off” and surpasses the conventional approach. The
technology clearly needs to scale. For a limited time, the capability can scale simply

20

3 THE BIG PICTURE

Calendar Time	

C
om

pu
te

 C
ap

ab
ili

ty
	

now	

Free evolution	

Calendar Time	

C
om

pu
te

 C
ap

ab
ili

ty
	

now	

Innovation with ACT	

Calendar Time	

C
om

pu
te

 C
ap

ab
ili

ty
	

now	

Innovation within	

Material Platform	

Figure 3.4: Scenarios resulting from different approaches to innovation in computational
problems. The leftmost plot represents the “free” evolution in compute capability one
obtains by allowing conventional CMOS to improve according to Moore’s law due to industry
investment. The middle plot represents the possible evolution resulting from directed efforts
to innovate at the machine architecture level and above. The rightmost plot represents
the evolution of a novel alternative compute technology (orange line) as it incubates and
eventually “takes off.” For the computational problem of prime factorization, the orange curve
might represent quantum computing with Shor’s algorithm, while the blue curve represents
the evolution of a standard general number field sieve algorithm on CMOS hardware.

by letting the system get larger, but, ultimately, the Device Platform has to improve
to provide for device scaling. This capability will have to be paid for by the user base,
and it may be possible to offset some costs by leveraging innovations in other material
systems. Supporting device level innovation, particularly if the costs of scaling also
have to be carried, can rapidly become prohibitively expensive.

These observations and analysis led us to three general conclusions governing
the role ACTs should play in the strategic computing landscape. The development
effort required to make an ACT competitive may be considerable, and such a high
cost must be considered in terms of the potential return on investment. The largest
uncertainty is the future value of CMOS, particularly if the USG invests to expand its
potential. Industry is willing to invest over $50 billion per year in advancing silicon.
The IC needs to leverage this investment to the maximum before resorting to an
ACT. Spending upwards of $1 billion per year on expanding the capability of silicon
at the machine architecture level merits serious consideration given the cumulative
investment in silicon by industry (see Recommendation G-3).

3.2.1 Classical Digital Computing
Classical digital computing represents information as bits and performs a sequence
of logical operations on that information to compute. Although physical processes
are used to compute, no natural laws govern the computation. Hence, a wide range
of potential device platforms is available—everything from the standard CMOS to
billiard balls. The three viable Device Platforms we examined were CMOS and Beyond
CMOS, Superconducting, and Biomolecular, as shown in Figure 3.2.

21

3 THE BIG PICTURE

In the most common form of the classical style of computing, a stored program
controls execution with a von Neumann architecture. The von Neumann architecture
stores the program in main memory. Program instructions and data are fetched from
memory and executed in the CPU. The von Neumann architecture requires high
bandwidth between the CPU and memory. The bandwidth between the CPU and
memory often limits performance, and this limitation is called the von Neumann
bottleneck. The introduction of multi-core CPUs without a commensurate increase in
the memory bandwidth has stressed memory bandwidth even more. There are many
variants on the basic von Neumann approach at the machine architecture level, and
these systems also support a variety of programming models. The core ideas behind
the von Neumann architecture are so ingrained in many of us that we often find it
difficult to conceive of computing in any other way.

There is nothing inherently wrong with the von Neumann architecture. The
problems stem mostly from limitations at the Device Platform level. Specifically, in
the CMOS and Beyond CMOS platform, moving bits dissipates most of the energy,
and, by its nature, the von Neumann architecture moves a lot of bits. Alternatively,
the superconducting platform moves bits at 4 K, with practically no energy dissipation.

Biomolecular computing is not a von Neumann architecture, though it can have
the same compute capabilities, in principle. Information is coded into molecules.
Communication is performed by random mixing of molecules in solution, and processing
is via chemical reactions driven by heat. Bennett has noted that this is an example
of Brownian computation [20]. The computation is a random-walk driven by heat.
Dissipation is necessary to prevent the chemical reaction from going in the backward
direction. Dissipation of 20 kT 1 (100 kT) gives a probability of error of e−20 ≈ 2×10−9

(e−100 ≈ 4× 10−44), respectively. For comparison, CMOS transistors switch at 100,000
kT and superconducting logic is about the same, after accounting for thermal efficiency
of the refrigerator need to cool a superconducting computer to 4 K. Hence, biomolecular
computing offers the possibility of extremely low-power computation (though one
should also include the power required to run the associated laboratory equipment
used in the calculation). Table 3.2 presents an overview of our recommendations for
the Classical Digital style of computing.

CMOS and Beyond CMOS

A global market for semiconductors of more than $300 billion annually [4] drives
more than $50 billion annually [1] into research and development of the Silicon
Material System and the CMOS Device Platform. The IC needs to leverage industry’s
investment to the greatest extent possible.

The ITRS roadmap predicts that the CMOS transistor will reach its practical
scaling limit in 2024 and that that limit will be only 3× worse than the theoretical

1kT is the thermal energy of a degree of freedom of a system at temperature T . At room temperature
(300 K), kT = 4.1 × 10−21 J.

22

3 THE BIG PICTURE

Table 3.2: Recommended investment strategy “map” for CMOS and Beyond CMOS. The
technology stack, from state variable to algorithm is listed at the top of each column.
Individual device technologies are listed in each row. Our recommended investment strategy
for each portion of the map (i.e., each combination of technology and location in the technology
stack) is labeled by reference to a particular recommendation from Section 2 in the format
C-N .

Computing
Style

Device Platform State Material Device Component
Architecture

Node
Architecture

System
Architecture

Programming
Model

Algorithm

Classical
Digital

Biomolecular C-7: IC should watch for disruptive
application to computing
C-7: IC should watch for disruptive
application to computing
C-7: IC should watch for disruptive
application to computing
C-7: IC should watch for disruptive
application to computing

Classical
Digital

Superconducting C-4: Demonstrate
performance advantage
C-6: ITRS-like roadmap
for superconducting

C-4: Demonstrate
performance advantage
C-6: ITRS-like roadmap
for superconducting

C-4: Demonstrate
performance advantage
C-6: ITRS-like roadmap
for superconducting

C-5: Explore communications-intensive machine architecturesC-5: Explore communications-intensive machine architecturesC-5: Explore communications-intensive machine architecturesC-5: Explore communications-intensive machine architecturesC-5: Explore communications-intensive machine architectures
Classical
Digital

Beyond CMOS
C-1: ITRS Challenges
and Beyond CMOS
C-1: ITRS Challenges
and Beyond CMOS
C-1: ITRS Challenges
and Beyond CMOS

C-2: Pursue holistic design
C-3: Break the von Neumann barrier
C-2: Pursue holistic design
C-3: Break the von Neumann barrier
C-2: Pursue holistic design
C-3: Break the von Neumann barrier
C-2: Pursue holistic design
C-3: Break the von Neumann barrier
C-2: Pursue holistic design
C-3: Break the von Neumann barrier

Classical
Digital

Digital CMOS
C-1: ITRS Challenges
and Beyond CMOS
C-1: ITRS Challenges
and Beyond CMOS
C-1: ITRS Challenges
and Beyond CMOS

C-2: Pursue holistic design
C-3: Break the von Neumann barrier
C-2: Pursue holistic design
C-3: Break the von Neumann barrier
C-2: Pursue holistic design
C-3: Break the von Neumann barrier
C-2: Pursue holistic design
C-3: Break the von Neumann barrier
C-2: Pursue holistic design
C-3: Break the von Neumann barrier

Industry IC InvestmentIC Investment Other USG

limit for any charge-based device [131]. Realizing the inevitable end of the scaling
of CMOS, the ITRS has put forth the following four challenges to focus research on
emerging devices:

• CMOS: Scale CMOS to its practical limit.

• Beyond CMOS: Continue functional scaling of information processing technology
substantially beyond that attainable by ultimately scaled CMOS, which may
require non-binary data representation and non-Boolean logic.

• Platform: Extend ultimately scaled CMOS as a platform technology. Produce
new device technologies and primitive-level architectures to provide special-
purpose, optimized functional cores heterogeneously integrable with CMOS.

• Memory: Identify the most promising technical approaches to obtain electrically
accessible, high-speed, high-density, low-power, embeddable (with the CPU)
volatile and non-volatile random-access memory (RAM).

These challenges, as articulated, provide confidence of sufficient direction and
investment from industry at the device level for the foreseeable future. Any investment
from the IC would not significantly alter this course. Hence the IC should not
strategically invest at the Device Platform Level (see Recommendation C-1).

If the four ITRS challenges are met, the Device Platform in the 2025 time frame (and
likely sooner) will offer significantly new and enhanced capabilities. The potential for a
new form of embeddable memory opens up interesting architecture possibilities, such as
developing new, efficient versions of technologies like processor in memory (PIM). The

23

3 THE BIG PICTURE

problem is that bit transport will still dominate the power budget at all levels (chip,
main memory, and global memory) remains. Marginal improvement to bit transport
technology will help but will be insufficient to change the situation. Left unaddressed,
it will impact application performance and scalability. The only avenues remaining to
surrmount the problem are via machine architecture and algorithms. Architectures
need to move less data and move away from the von Neumann architecture. To improve
efficiency,= critical mission applications must involve less data movement. This need
will require a holistic co-design effort where new algorithms are developed that minimize
data movement and architectures are designed that enable data movement in the most
efficient manner. PIM is a natural way of reducing data movement, though these
approaches present challenges of their own. We need to fully leverage the capabilities
of the Device Platform, particularly given the challenges at the device level that
are being addressed by industry. As an example of a distinctly non-von Neumann
architecture, and one that is not PIM, take the Micron Automata processor [38]. The
Automata processor, due to be released commercially in 2014, is an accelerator that
computes by directly simulating non-deterministic finite automata in hardware. It
does not have an instruction set; rather, its input is a string drawn from an allowed
alphabet of symbols. It can be used to accelerate regular expression matching, for
example.

Ultimate success will result from tools and techniques for holistic design that
encompass the entire design space—from algorithm design proceeding down through
the components employed on the chip. This system stack must emphasize using
communications efficiently—which ideally will break through the von Neumann wall
(see Recommendations C-2 and C-3). As recently pointed out in a JASON study

JASON [65], we are unlikely to be able to build a practically useful exascale machine
without all-encompassing, holistic codesign. In fact, as evidenced by the presentations
at the DOE’s codesign “birds of a feather” event at SC13,2 domain scientists and
computational scientists are working together on increasingly holistic codesign efforts,
which they call “radical codesign.”

Superconducting

Superconducting logic elements use the Josephson junction to generate and process
single flux quanta (SFQ) at 4 K. Bits are represented as the presence or absence of
SFQ. SFQ propagate ballistically with essentially no propagation loss. There are many
variants of SFQ logic, and all can provide a complete set of logic gates.

Systems built from superconducting technologies support standard digital computing
and consequently offer a way forward for much of what we know how to do with
conventional CMOS computing, from machine architectures to algorithms onto the
superconducting technology base, with the potential for several orders of magnitude
improvement in performance.

2SC13, Denver, CO, November 20, 2013

24

3 THE BIG PICTURE

The primary advantage of digital superconducting electronics is reduced power
consumption. Notional systems designs for superconducting exaflop computing are
around 1 MW, a factor of 20 less than the DOE exascale target and a factor of 500
less than estimates based on conventional CMOS computing. These estimates assume
superconducting logic and memory to have sufficiently low energy dissipation, which
has not yet been experimentally verified. (see Recommendation C-4)

The energy required to move bits in superconducting chips is near zero and
independent of distance, unlike conventional CMOS computing where moving bits
accounts for most of the dissipated power on a chip. This advantage could be very
important for computations that are communications intensive and for which the
improvements in performance will be greater by moving to a superconducting base
technology than they will be for highly local computations involving little data
movement. (see Recommendation C-5)

Because the heat generated with digital superconducting circuits is much less than
with digital CMOS, many packaging constraints are not as severe. This reduction in
thermal load can lead to large and more diverse 3D stacking of chips and consequently
an overall reduction in the size of the system (see Recommendation C-6)

Because superconducting systems will rely on advanced 3D packaging, reliability
of the components will be key, and systems may require new approaches to reliability.
Not only is it difficult to thermally cycle the system for servicing, but it is also unlikely
that part of a 3D stack could be serviced beyond replacement of the entire stack.
Superconducting systems will therefore need to fail gracefully.

The benefit of superconducting computing may be limited by the scalability of the
chip to smaller feature size. Unlike conventional CMOS computing, superconducting
logic circuits make extensive use of inductors, which are difficult to make smaller. Ulti-
mately, this may limit scalability and will need to be addressed (see Recommendation
C-6).

Processors built from superconducting logic can run faster, which leads to strong
scaling, where each processor can do more computation (assuming memory access
time is proportional to the increased speed). This will result in smaller systems (less
memory) and more efficient computation than under weak scaling where the processor
speed does not increase and consequently the size of the problem must increase to keep
the amount of work constant as processor count is increased (see Recommendation
C-6).

Biomolecular

Over the last 20 years, biomolecular computing has gone through three phases:
deoxyribonucleic acid (DNA) computing for hard computational problems, Molecular-
tile computing to address computational limitations of DNA computing, and Molecular
computing. DNA computing encodes information in oligonucleotides (single strands
of DNA), and processing is via Watson-Crick pairing (pairing of DNA bases with their

25

3 THE BIG PICTURE

complement) and ligation (the joining of two strands of DNA). DNA computing focused
on NP-hard problems, where the many molecules in solution could efficiently explore
large spaces. Molecular-tile computing was developed to provide more control over the
calculation. Molecular-tile computing uses a set of two-dimensional (2D) DNA tiles
that can be thought of as having colored edges. Computation progresses by growing a
2D structure where tiles can bind along edges of the same color. More recently, the
focus has been on Molecular computing for controlling biological systems and not
computing. Simple logic functions have been demonstrated with a range of molecular
mechanism in vitro and in vivo. Analog computing has also been demonstrated in
vivo.

DNA computing has been used to solve computationally hard (NP) problems in
linear time. DNA computing as a solution for NP problems has limited scalability
and consequently has little practical value. The number of DNA molecules that can
be contained in solution limits the size of the space that can be searched. While DAA
computing does potentially offer a significant speed-up for exhaustively searching small
spaces that are beyond the capability of conventional computing, these solutions are
of no practical value without an ability to scale to larger spaces. Trading exponential
scaling in running time for exponential material resources, as DNA computing does,
still leaves the solution to the problem in an exponential space. Instead of running
out of time, now one runs out of molecules. The extension of DNA computing to
a general Turing-complete machine has been studied but has never been realized.
Furthermore, this would not be practical because of the long operational time needed
for the sequential steps in typical computations.

Molecular-tile based computing does expand the compute capability of biomolecular
computing and provides a basis for universal computation with molecules. However,
this general capability has yet to be realized. Algorithms for factoring and Boolean
satisfiability still have exponential complexity for spatial resources, and there is no
significant advantage over conventional computing for these and other NP problems.
This is just the nature of computing with a Turing machine—exponential problems
stay exponential. Furthermore, these calculations must proceed slowly to avoid error.
Thus, the computation time is excessively long because the growth temperature is
near the melting point and molecular-tile concentration is low. Finally, much of the
effort in this area has been refocused on the algorithmic nature of self-assembly of 2D
and 3D structures, with possible applications to Molecular computing.

More recently, Molecular computing has developed to address computational issues
in biological systems for enhancing or adding functionality to a biological system.
It is not a general-purpose computing technology using a biological substrate. The
biological interactions are slow, occurring on the scale of minutes to days, though they
can be exceptionally low power. These techniques are being developed for application
in medicine, fuel production, and environmental engineering.

DNA Computing and Molecular-tile computing have severe limitations for compu-
tationally hard problems and are not active areas of experimental research. Molecular

26

3 THE BIG PICTURE

computing is focused on simple logical operations using a diverse number of mechanisms.
The focus is not on computation but on control in biological systems. This research
should be funded by other parts of USG (NSF and NIH, for example) and watched by
the IC for possible disruptive application to computation (see Recommendation C-7).

3.2.2 Neuro-Inspired Computation
The processing performed in animal brains motivates neuro-inspired computation. No
amount of shrinking the transistor will allow conventional digital CMOS computing to
do what the human brain is capable of doing with only 15 W. Neuro-inspired computing
is characterized by analog and approximate computation with high connectivity.
Processing and memory are intertwined. Like the human brain, neuro-inspired
computation is expected to be good at stream processing of vision, hearing, and other
sensor modalities, as well as online learning. Neuro-inspired processing should also be
useful for processing unstructured big data.

Neural-style processing is connection-driven. Information flows along the connec-
tions (synthetic axons, synapses, and dendrites) from one synthetic neuron to the next,
each of which generally performs a nonlinear transformation on the sum of the input
signals to that neuron. Knowledge is encoded in the connection strengths (weights)
through a learning procedure. Often, digital spikes are used for capturing temporal
events using STDP learning.

There is much we do not understand about how the brain works. While we have a
good understanding at the cellular level and at the global organizational level, we lack
understanding at the circuit level—how the neurons are organized into interconnected
cortical columns, and how these circuits are interconnected. Efforts including the
Human Brain Project in Europe and the recent BRAIN Initiative in the United Sates
(US) are focused on achieving understanding at these levels. Efforts like these need
to continue and even be expanded (see Recommendation N-1). Meaningful progress
will require an interdisciplinary team of biologists, control engineers, mathematicians,
physicists, and computer scientists. At this point, we do not have a computation
model for how the brain works. Developing a rigorous understanding and model of
neurological computation should be a key goal.

Neuro-inspired computing can be simulated use a digital computer, implemented
in analog CMOS, and could possibly one day utilize analog and digital biomolecular
computation in cells. Neuro-inspired computing on conventional digital computers is
useful for developing our understanding but, ultimately, because of limited connec-
tivity and low energy efficiency compared to neuromorphic circuits, is inferior for
processing across the spectrum, from robotics to big data. Our best choice for realizable
neuromorphic computing at present is hybrid analog/digital CMOS.

Analog electronic design is a very mature field and is ready for deployment.
However, the extensions needed for scalable Neuro-inspired computation, such as
CMOS-ready synapses and the hardware-friendly algorithms, are still in the research

27

3 THE BIG PICTURE

Table 3.3: Recommended investment strategy “map” for Neuro-inspired computation. The
technology stack, from state variable to algorithm, is listed at the top of each column.
Individual device technologies are listed in each row. Our recommended investment strategy
for each portion of the map (i.e., each combination of technology and location in the technology
stack) is labeled by reference to a particular recommendation from Section 2 in the format
N-X.

Computing
Style

Device Platform State Material Device Component
Architecture

Node
Architecture

System
Architecture

Programming
Model

Algorithm

Neuro-
inspired

Analog
Biomolecular
Mixed-signal
Biomolecular

N-4: IC should watch for disruptive
application to computing
N-4: IC should watch for disruptive
application to computing
N-4: IC should watch for disruptive
application to computing
N-4: IC should watch for disruptive
application to computing

Neuro-
inspired Analog CMOS

Mixed-signal CMOS
N-1: Guide hardware from algorithm and
biology
N-2: Develop energy-efficient synapse

N-1: Guide hardware from algorithm and
biology
N-2: Develop energy-efficient synapse

N-1: Guide hardware from algorithm and
biology
N-2: Develop energy-efficient synapse

N-1: Guide hardware from algorithm and
biology
N-2: Develop energy-efficient synapse

N-1: Neuro algorithms
N-3: Temporal learning
N-1: Neuro algorithms
N-3: Temporal learning

Industry IC InvestmentIC Investment Other USG

phase. Small-scale demonstrations on toy problems exist using current technology
(floating gate or large circuit synapses and simple local learning algorithms), but
the synapses and algorithms needed for massive streaming data and sophisticated,
knowledge-based analyses do not exist.

Analog electronics scales roughly like digital electronics, so the end of CMOS
scaling will limit scalability in analog CMOS. However, new devices like memristors
and new hardware architectures like 3D and self-assembly can continue the scalability
of electronic systems. Neurobiology shows the way to a self-assembled existence proof
of scalable, low-power computation. Investment to create the technical breakthroughs
in silicon synapses, self-assembly, and scalable temporal learning algorithms can return
large dividends in solving real-world problems in robotics and processing unstructured
data streams.

CMOS transistors biased below threshold behave like neurons and have been used
to create silicon neurons. What is missing for serious neuromorphic computing is a
robust and compact synapse technology that can be well integrated with CMOS. The
Technology Readiness Level (TRL) of analog CMOS is extremely high for traditional
applications but not so for silicon synapses. An effort is needed to develop a high-
density, energy-efficient silicon synapse with adjustable weight that is interoperable
with silicon neurons (see Recommendation N-2).

Another strong need is a hardware-aware, temporal learning algorithm that can
work in large hierarchical networks to create compositional representations. A version of
STDP that works on a compact hardware synapse and that can create compositional
representations of temporal events and hierarchical sequences would be a major
breakthrough. A demonstration of usefulness for a large-scale surveillance problem
might be needed to show success. Metrics should include compact size and low power,
say a thousand-fold better than digital CMOS (see Recommendation N-3).

28

3 THE BIG PICTURE

Silicon neurons use two to three orders of magnitude less energy than digital
neurons (neurons simulated on a conventional digital computer). Biological neurons
are seven orders of magnitude more efficient that digital neurons. Analog computation
has recently been demonstrated in cell. Ultimately, a synthetic biological platform
based on biomolecular interactions may be the most computationally efficient. The
area of Molecular computing, with a focus on computation in vivo for control in
synthetic biological systems, should be watched for potentially disruptive applications
to neuro-inspired computing (see Recommendation N-4).

3.2.3 Analog Computing
Analog computing represents information as physical variables (e.g., the voltage
on a capacitor) and allows the system to evolve according to dynamical laws (e.g.,
Kirchhoff’s laws for RLC circuits). For an analog system to solve a problem of interest,
an analogy or relationship between the analog system and the problem needs to be
established.

Analog computing has limited precision (whereas conventional digital computing
has unlimited arbitrary precision) and potentially limit its usefulness. The basic
operations in analog computing are summation, integration, inversion, multiplication,
exponentiation, logarithm, and division.

We did find one hard computational problem of interest to the IC, possibly suitable
for analog computing. Boolean satisfiability can be mapped onto a dynamical system
described by a set of first order differential equations that could be solved by either a
conventional digital computer or possibly by an analog computer. Boolean satisfiability
is the canonical NP-complete problem. This approach merits further exploration.

Perhaps what may be more interesting than this mapping of Boolean satisfiability
onto a dynamical system is the general notion of mapping problems onto dynamical
and solving for their evolution with either analog or digital computation. This merits
further exploration (see Recommendation A-1).

Table 3.4: 4 Recommended investment strategy “map” for analog. The technology stack,
from state variable to algorithm is listed at the top of each column. Individual device
technologies are listed in each row. Our recommended investment strategy for each portion
of the map (i.e., each combination of technology and location in the technology stack) is
labeled by reference to a particular recommendation from Section 2 in the format A-N .

Computing
Style

Device Platform State Material Device Component
Architecture

Node
Architecture

System
Architecture

Programming
Model

Algorithm

Analog

Analog
Biomolecular
Mixed-signal
BiomolecularAnalog Analog CMOS
Mixed-signal CMOS

A-1: Map
problems

Industry IC InvestmentIC Investment Other USG

29

3 THE BIG PICTURE

Analog computing is readily implemented using the Analog and Mixed Signal
CMOS Device Platforms. Analog computation has also been demonstrated using
biomolecular chemical reactions in living cells. Decisions on an investment strategy for
analog Device Platform and Machine Architecture should be based on first establishing
the viability of analog computing to solve an identified problem of interest for the IC.

3.2.4 Quantum Digital
Information in the quantum digital model is represented in qubits (quantum mechanical
two-state systems, such as electron spin) and evolves through the application of
a sequence of quantum transformations. The archetypal application of quantum
computers is Shor’s algorithm for factoring numbers. The power of a quantum
computer resides in the size of the state space accessible to it, which is exponentially
larger than that of a classical digital system. A quantum computer will simultaneously
hold more numbers than there are particles in the universe when factoring a 125-bit
number via Shor’s algorithm. This is possible because of the quantum principle
of superposition, which allows a qubit to hold both a 0 and 1 at the same time.
Superposition and entanglement give quantum computers computational power that
surpasses the computational power of conventional digital computation. Hence, it is
not surprising that a quantum computer can reduce the complexity of at least one NP
problem from exponential for classical digital computation to polynomial for quantum
digital computing.

While the utility of quantum computing for integer factorization (and other appli-
cations in that family of problems) is well established, no other quantum algorithms
appear to have the same appeal. Why? Is this just a case where the IC mission
requirements dominate conventional thinking on quantum algorithms? Are the prac-
tical uses for quantum computers that limited? Or, do we not yet have an intuitive
way of understanding quantum computation that allows us to fully understand its
true power? There are other models of quantum computation, including adiabatic and
cluster-state computation. There must be a long-term, sustained effort to understand
quantum computation and applications at a deeper level (see Recommendation Q-1).

A practical quantum computer requires a scalable logical qubit. After 25 years
of research and exploration of over a dozen candidate qubits, there is still no logical
qubit, much less one that is scalable. Scalability is a critical requirement. In the
history of computing, technologies that cannot scale do not survive.

Part of the challenge of developing a logical qubit is in protecting the quantum
state from the environment. Left unprotected, the quantum state of a qubit survives
for about one second, at best. It needs to survive for the duration of the calculation,
which can be from hours to days. The logical qubit is the “immortal” qubit. While
quantum error correction could protect a qubit from the environment, the overhead
imposed by quantum error correction is so great that most of the calculation is spent
detecting and correcting errors. The actual calculation is basically insignificant.

30

3 THE BIG PICTURE

Table 3.5: Recommended investment strategy “map” for quantum digital. The technology
stack, from state variable to algorithm, is listed at the top of each column. Individual device
technologies are listed in each row. Our recommended investment strategy for each portion
of the map (i.e., each combination of technology and location in the technology stack) is
labeled by reference to a particular recommendation from Section 2 in the format Q-N .

Computing
Style

Device Platform State Material Device Component
Architecture

Node
Architecture

System
Architecture

Programming
Model

Algorithm

Quantum
Digital

GaAs Quantum
dot

Q-2: Demonstrate a
logical qubit
Q-2: Demonstrate a
logical qubit
Q-2: Demonstrate a
logical qubit

Q-3: Develop candidate system level
architectures
Q-3: Develop candidate system level
architectures
Q-3: Develop candidate system level
architectures

Quantum
Digital

Si-Phosphorous

Q-2: Demonstrate a
logical qubit
Q-2: Demonstrate a
logical qubit
Q-2: Demonstrate a
logical qubit

Q-3: Develop candidate system level
architectures
Q-3: Develop candidate system level
architectures
Q-3: Develop candidate system level
architectures

Quantum
Digital

Si Quantum dot Q-2: Demonstrate a
logical qubit
Q-2: Demonstrate a
logical qubit
Q-2: Demonstrate a
logical qubit

Q-3: Develop candidate system level
architectures
Q-3: Develop candidate system level
architectures
Q-3: Develop candidate system level
architectures

Quantum
Digital

Superconducting

Q-2: Demonstrate a
logical qubit
Q-2: Demonstrate a
logical qubit
Q-2: Demonstrate a
logical qubit

Q-3: Develop candidate system level
architectures
Q-3: Develop candidate system level
architectures
Q-3: Develop candidate system level
architectures

Quantum
Digital

Trapped-ion

Q-2: Demonstrate a
logical qubit
Q-2: Demonstrate a
logical qubit
Q-2: Demonstrate a
logical qubit

Q-3: Develop candidate system level
architectures
Q-3: Develop candidate system level
architectures
Q-3: Develop candidate system level
architectures

Industry IC InvestmentIC Investment Other USG

The five device platforms listed in Table 3.5 are our best chance at present for a
scalable qubit. Developing the logical qubit will be expensive and will require at some
point a down-selection to one or possibly two approaches. This selection has to be
based, in part, on machine architecture considerations. Most of the research to date,
however, has been focused on qubit technology. Hence we are recommending a focus
on a scalable logical qubit (see Recommendation Q-2) and a machine architecture
based on candidate qubit technology (see Recommendation Q-3).

3.3 Conclusion
We stress that this study was a broad look at alternative computational technology
across a wide class of hard problems of interest to the IC. We did not treat any
one problem as being more important than any other problem. Because there was
no clear winning ACT across all applications, investment decisions must be made
based on priorities of the IC. We made no assumptions regarding priorities of the IC.
The one thing that is clear, though, is the importance of computation to the IC. If
and when technology advances start to stall at the device level, the advantage will
go to organizations that approach problems creatively, and this approach requires a
motivated team of creative professionals in a well-supported environment. Adopting
this perspective is perhaps the strongest recommendation we can make.

31

4 Detailed Discussion: Compute Models

We have become a society that makes use of computers throughout our daily lives with
little need to understand more than the human–machine interface. Most people have no
need to consider the underlying computer and computational science and engineering
involved. When considering alternative computing technologies, though, we must
consider the computational model explicitly because, ultimately, the capability of a
solution is a combination of the computation model and the technology used to realize
it. Classical computing models have been used to move the early science of computing
forward by providing abstractions to identify designs and other implementations—the
Turing Machine and various implementations. Meanwhile, nature also “computes”—
and in strikingly different ways from classical computing.

The baseline model for all computing is the classical Turing machine model of
computation. Turing-equivalent computers have been realized with vacuum tubes,
discrete transistors, silicon-integrated circuits and superconducting logic. We addition-
ally consider three other computation styles: analog, neuro-inspired, and the quantum
Turing machine (QTM). As we will see, each model has its capabilities and limitations.
Analog computing represents information as variables in a dynamical system and uses
the system’s dynamical evolution to compute. Neuro-inspired seeks to understand
and mimic computational processes in animals. The QTM uses the physical laws
of quantum evolution and information encoded into quantum states. Although the
classical Turing machine model dominates computing, there are many problems for
which other computational models are more powerful. The most obvious example is
factoring integers, where the computational power of quantum computing far exceeds
that of the classical Turing machine.

There is a substantial gap between the maturity of classical computing and emerging
non-classical paradigms. Sustained investment over many years is clearly required to
hone the craft into a useable science. It may not be economically possible to advance
the rigor of all non-classical approaches, in which case triage is required to determine
the appropriate funding level for each approach. We must choose wisely.

4.1 Fundamental Physical Limits on Computation

Computation is inherently physical; however there are several fundamental physical
limits on computation are independent of compute model or technology used to
implement the model. Before exploring different models of computation in this
chapter, or technologies in the next, we describe limits on computation.

33

4 DETAILED DISCUSSION: COMPUTE MODELS

4.1.1 Landauer Limit
Perhaps the best known physical limit on computation is the Landauer limit, which
states that the erasure of a bit of information is accompanied by an entropy increase
of at least kT ln 2, where T is the temperature of the system and k is the Boltzmann
constant [70]. (At a temperature of 300 K, this corresponds to 4.1 × 10−21 J.) The
consequence is that for irreversible computing (i.e., computation in which information
is destroyed) energy must be consumed during computation.

By storing intermediate results, it has been shown that fully reversible computation
is theoretically possible [19]. A reversible computer could in principle compute with
zero entropy generation and thus zero energy consumption. Although the realization
of a truly reversible classical computer is extremely unlikely due to, e.g., thermal noise,
reversible computing is an active area of research. Computers built in the reversible
style may be much more energy efficient than the conventional, irreversible computers
in use today.

Bennett [20] explored the consequences of our inability to isolate computing
systems from thermal noise and introduced the concept of the Brownian computer.
A Brownian computer is a more realistic form of reversible computer that is driven
along its compute path by thermal noise. Bennett showed that it is possible to
compute with zero energy consumption, but only in the limit that the computation
proceeds infinitesimally slowly. The biological process of DNA replication comes close
to realizing the Brownian computer, dissipating . 100 kT per step.

4.1.2 Bekenstein Bound
While it might appear at first that some classical physical quantities should be
represented by real numbers and, hence, seemingly contain boundless amounts of
information in the infinite number of decimal places of such numbers, Bekenstein [16]
showed that there is a finite upper limit on the amount of information that can be
contained in a finite volume of space with finite entropy. This limit is

Imax =
2πRE

}c ln 2
, (4.1)

where R is the radius of the spherical volume, E is its energy, and c is the speed
of light. Note the presence of the reduced Planck constant, }, which hints at the
fundamentally quantum nature of this limit. By using the equivalence of mass and
energy (E = mc2), we can write the limit as

Imax ≈ 1043mkgRm bit , (4.2)

where mkg is the mass in kilograms and Rm is the radius in meters. The Bekenstein
bound on information density is astronomically higher than has been achieved with
any computing system built to date [see, for example, 77]. However, the mere existence
of the upper limit is sufficient to place constraints on the power of some compute
models (see Section 4.3 for one such example).

34

4 DETAILED DISCUSSION: COMPUTE MODELS

4.1.3 Bremermann’s Limit and the Margolus-Levitin Theorem
Bremermann’s limit specifies an upper limit on the computational speed of a self-
contained system. This limit is c2/h ≈ 1050 bit · s−1 · kg−1, where h is the Planck
constant. The limit arises by considering the transition between distinguishable states
in a physical bit and applying the energy–time form of the Heisenberg uncertainty prin-
ciple [77]. Bremermann’s limit is of practical use in setting unbreakable cryptographic
key sizes, for example.

Note that Bremermann’s limit is closely related to the Margolus-Levitin theorem,
which states that the time required for a system of energy E to move between
orthogonal states is h/4E [81]. This limit implies a maximum compute speed of
4/h ≈ 6 × 1033 operations per second per Joule of energy. The equivalence with
Bremermann’s limit (modulo factors of order unity) is obtained by taking the energy
of a system of mass m to be the rest energy, mc2.

4.1.4 Efficient Solution of NP-Complete Problems
While it has not been proven, many believe that nature does not efficiently solve
NP-complete problems of interesting size [see, for example, 6]. The origin of this
belief lies partly in the fundamental limits described previously, which rule out the
exact solution of NP-complete problems of sufficiently large size since the number
of physical states through which the system must pass is larger than is physically
possible by the entire universe. This belief also originates in the observation that
when confronted with an NP-complete problem, nature is apparently content with
approximate solutions.

Note, however, that this argument refers to the efficient (i.e., polynomial time)
solution of NP-complete problems. It may be that an alternative, physically based
form of computation offers a speedup over conventional digital CMOS for certain
types of NP-complete problems while still retaining a super-polynomial scaling with
problem size.

4.2 Turing Machine
When we use the term “classical digital computation,” as we have done many times,
we refer specifically to Turing-complete computation in which information is stored
in binary digits. The overwhelming majority of digital computation performed by
modern computing hardware (e.g., CMOS-based devices) is of this computational style.
As is understood by the reader who has any familiarity with computer programming,
computation proceeds in this style as a sequence of algorithmic operations on binary
data. For the sake of completeness, we include a brief description of the Turing
machine. Note that this is but one instance of a Turing-complete computer, the
lambda calculus [122] being perhaps the most famous alternate example.

35

4 DETAILED DISCUSSION: COMPUTE MODELS

Turing Machine: In a 1930s paper on computable numbers, Alan Turing
presented a description of a hypothetical machine with the ability to compute a
“function” [124].

The Turing machine consists of an unlimited amount of memory (in the
form of an infinite tape marked off into sections) where each section
contains a symbol. Only a single symbol is entered into the machine at
any time. The machine can alter the scanned symbol and the machine
behavior in part due to the particular symbol and a table of rules. No
other symbol on the tape affects the behavior of the machine. The tape
can be moved forward and backward so that any symbol can have input
to the machine.

The Turing Machine [124] is of note because it specifies a very limited number of
atomic operations that can be used to construct more complex procedures, providing
the basis for computing algorithms. The Turing Machine is a very simple concept,
but it has the capabilities of any modern digital computer. Thus, we tend to think
of the Turing Machine as a computer with a processor and read/write memory that
implements computer codes/programs. This perception is generally incorrect, because
the write process is limited to the read location.

von Neumann/Princeton Paradigm: The compute model conceived by John
von Neumann differs from the Turing Model by permitting RAM and more oper-
ations/capabilities in the processor. Any operation can read from or write to any
memory location independently from the previous operation. The processor has a
set of built-in instructions that include binary arithmetic and conditional branching.
Contents of memory can be either instructions or data, both residing in the same
memory address space. The instruction set is static and the data moves to the
instructions. The von Neumann model can compute the same functions as a Turing
Machine—thus offering a subset of capabilities. The von Neumann architecture is
limited to sequential processing; thus parallel computing architectures are referred to
as non-von Neumann architectures.

Harvard Paradigm: The Harvard compute model [58] has physically separate
storage and interconnections to memory for program instructions and data. This
architecture permits (1) optimal storage of different sized instructions and data and
(2) the ability to access an instruction and data concurrently. These two differences
set the Harvard paradigm apart from the von Neumann paradigm.

Algorithmic Paradigm: The algorithmic paradigm models the system as a black
box, isolated from external influences. A program maps initial inputs to a final output
via a deterministic function. Consequently, random behavior or results are undesirable.
Also, it is assumed that the function has a beginning and that end and the processor
can be switched on/off. [119]

36

4 DETAILED DISCUSSION: COMPUTE MODELS

Refinement Paradigm: A specification of the algorithm exists and can be refined to
a provably correct code through a series of incremental transformation steps. Answers
are logically true/false and provably correct. Thus, binary representations work well.
[119]

Pure Logic Paradigm: Only the code/algorithm matters since the computing
hardware and the hardware implementation are irrelevant. This paradigm has provided
codes that can be run on various processors by transforming the logic into a series of
instructions for the native processor instruction set [119].

Stochastic Computing Paradigm: The paradigm is a method of computing where
continuous values are represented by streams of random bits. Complex computations
are performed by simple bit-wise operations on the streams. Modern digital computing
has overcome the computational issues with highly accurate specialized arithmetic
engines. [8]

Probabilistic Computing Paradigm: The paradigm method of computing where
the output of the circuit is correct with some probability p, where p < 1. Probabilistic
computing is most applicable to applications that either require or can tolerate
non-deterministic or probabilistic behavior. [82].

4.2.1 Technologies
Three classes of computing devices/technologies follow one or more of the classical
models: (1) CMOS and Beyond CMOS, (2) Cryogenic Superconducting, and (3)
Biomolecular. CMOS and Beyond CMOS and Cryogenic Superconducting clearly
are classical digital devices/technologies and follow classical paradigms. One obvious
deviation from the Turing machine and the von Neumann or Harvard paradigms is
that they will be highly parallel technologies. Meanwhile, they clearly follow the
Algorithmic, Refinement, and Pure Logic paradigms. Biomolecular computing offers
two possible ways to follow classical paradigms:

• Implementation of synthetic genetic circuits that use recombinases to implement
Boolean (digital) logic functions (Algorithmic, Refinement, and Pure Logic
Paradigms)

• Using proteins and enzymes with highly predictable responses to implement
functions (Turing Machine).

4.2.2 Algorithms and Processing
Classical computing models all rely on the Algorithmic and Refinement Paradigms
described previously. Characteristics of determinism and provably correct answers
that are definitely true or false are considered inherent to computing as we know
it today. Binary logic and arithmetic are intended to provide a belief that the
computer provides correct answers. Meanwhile, we may not be able to rely on such

37

4 DETAILED DISCUSSION: COMPUTE MODELS

characteristics in alternative computing technologies or even in near-future CMOS-
based designs that rely on very low power. In such cases, new models of Stochastic
or Probabilistic computing may require changes in the way that we compute, the
ways that we develop algorithms, and the way that we use the answers from these
technologies. Stochastic computing once was examined as a low-cost alternative to
conventional computing. Current/future technologies may have uncertainty in the
underlying hardware operations, and stochastic/probabilistic computing may provide
a way to deal with the uncertainty that occurs because of smaller CMOS feature sizes
and reduced power. It may be possible to implement abstractions that incorporate
non-determinism to provide greater reliability in massively parallel, fault-tolerant
machines.

4.3 Analog
4.3.1 Theoretical Introduction
At its core, the computational model for analog computing is the analogy. One
“computes” by manipulating and studying a surrogate system whose structure and
evolution are analogous to the system being modeled. For example, since the second-
order ordinary differential equation (ODE) that governs the evolution of a mass-spring-
damper system is analogous that of an RLC circuit, an RLC circuit can be used to
study the response of a mass-spring-damper system. With the introduction of the
operational amplifier in the 1940s, generalized analog computers that could solve sets
of differential equations of high complexity were designed and built [see, for example,
79]. As recently as 60 years ago, analog computers found widespread use in a number
of applications, including process control in industrial production and in ballistics and
fire control systems.

Analog computing is sufficiently versatile that the concept of a general purpose
analog computer (GPAC) has been developed and studied [112]. It has been shown
that the output of a GPAC is the solution of an algebraic ordinary differential equation
(ODE) initial value problem [104]. The GPAC concept was extended by Rubel [105],
who showed that the extended analog computer (EAC) could also solve initial-value
and boundary-value problems defined by partial differential equations. While the EAC
originated as a theoretical construct, it should be noted that an EAC has apparently
been realized in hardware [84].

It is natural to ask: Are there limits to the computational power of analog
computers? While the theory of analog computing has been studied in some detail,
progress in our understanding has not matched that of digital computing. What
distinguishes analog from digital computing is that an analog computer operates in a
continuous state space over continuous or discrete time, whereas a digital computer
operates in a discrete state space over discrete time. As one might expect, then, analog
computing has been modeled as computing over the real numbers (in contrast to
digital computation over discrete numbers) [21]. Branicky [24] showed that a Turing

38

4 DETAILED DISCUSSION: COMPUTE MODELS

machine could be simulated by a set of ODEs, suggesting that analog computing has
at least the power of a Turing machine. Siegelman [116] studied the theory of analog
computing in great detail and showed that the recurrent neural network (a type of
sequential-time analog computer operating over real numbers) has super-Turing power.
However, as has been pointed out [see, for example, 79], this super-Turing power
appears to originate in the system’s access to non-rational real numbers of essentially
infinite precision, which contain infinite information. Super-Turing analog computing
is therefore physically unattainable because the Bekenstein bound limits the amount
of information that can be contained in a given volume of space [77].

Another fundamental physical limit is especially relevant for analog computers—
the Planck scale. In many analog computers, numbers are represented in unary
format. This representation may not be obvious at first inspection, since analog
computers appear to operate on real numbers with precision limited by noise, for
example. However, at the most fundamental level, numbers are represented by
repeated quanta at the Planck scale [see, for example, 64]. While this distinction is
not particularly useful for typical analog applications (e.g., approximate solution of
ODEs), it is important when considering the applicability of analog computing to
problems requiring precise operations.

For an example problem requiring bit-exact operations, consider the computational
number theory problem of prime factorization. In prime factorization, there is no sense
of an approximate solution. In other words, the prime factorization of a number N + 1
is, in general, unrelated to the prime factorization of N . To perform prime factorization
via analog computing thus requires that the representation of an integer has sufficient
precision to represent all digits of the integer. For an integer N represented by a
physical quantity x, we thus require

δx

x
≤ 1

N
, (4.3)

where δx is the precision of x. In other words, the number of significant figures in
the measurement of x must be greater than the number of digits of N . The most
precise spatial and temporal measurement devices achieve measurement precision of
δx/x ∼ 10−23 (for Advanced Laser Interferometer Gravitational-Wave Observatory
(LIGO)) and δt/t ∼ 10−14 (for atomic clocks). The physical maximum achievable
precision is set by taking the entire universe as our analog computer and comparing
with the Planck scale, which is the smallest measurable scale. The Planck length
is (G}/c3)1/2 ≈ 10−35 m, while the size of the observable universe is ≈ 1027 m. This
fundamental limit on length implies a maximum accuracy on distance measurement of
≈ 10−62, or 62 decimal digits. The Planck time is (G}/c5)1/2 ≈ 10−44 s, while the age of
the universe is ≈ 1017 s. This fundamental limit on time implies a maximum accuracy
of time measurement of ≈ 10−61, or 61 decimal digits. Other physical quantities (e.g.,
mass, charge, voltage) are similarly constrained. The upshot is that analog computing
appears unable to represent (and thus perform operations on) numbers with more

39

4 DETAILED DISCUSSION: COMPUTE MODELS

than ∼ 62 digits. Depending on the application, number theoretical calculations on
numbers of this size might be considered “toy” problems.

The preceding argument assumes pure analog computing. Note that hybrid
approaches that represent numbers more efficiently are possible [106] and may form
the basis of analog computing machines that are more appropriate for problems
requiring an exact solution.

4.3.2 Practical Introduction
The preceding discussion highlights some of the theoretical aspects of analog computing
and points out how it is ill-suited to certain problems requiring exact solutions. In
this section, we describe the applications that are well-suited to analog approaches
and discuss the many potential benefits of analog.

In the early days of electronic computing, many companies were producing analog
computers capable of performing programmable calculations. With the advent of the
digital computer, most companies producing analog computers were gone by 1970.
This class of analog computer disappeared because it solved only a narrow set of
problems. As that set of problems increased, so did the complexity of the problems
and the complexity of the analog computers. The increased complexity of the problems
resulted in the system becoming more difficult to program. For systems performing
calculations, the marketplace very quickly made its choice, and the choice was digital
computing for those applications.

Analog computing, after having been displaced by the rise of digital computing,
is being considered seriously again. The primary motivating factors are the high
energy efficiency of analog arithmetic operations and the high spatial density of analog
devices. For example, analog devices have been shown to solve ODEs faster and with
fewer transistors and much less energy than achievable with digital computation.

Computation in analog CMOS often exhibits a physical style where, for example,
summation is effected by Kirchoff’s Law for current addition and multiplication is
effected by Ohm’s law for the voltage drop across a resistor. These structures take
up much less space than the equivalent digital adders and multipliers and, if the
currents are small, will dissipate far less power. The precision of such arithmetic
operations is much less than the 32 or 64 bits in digital CMOS, but it may be sufficient
in an adaptive analog neuromorphic system where a learning algorithm provides the
feedback needed to adjust for device mismatches and imperfections.

With the looming end of Moore’s law, analog computation, especially in CMOS
technology, is receiving a fresh look, particularly for neuromorphic devices. As
mentioned in Section 4.4, there is a need for a compact synapse which can be integrated
into an analog CMOS technology. Floating gates are an example of one that works,
but it is important that they be able to implement machine learning algorithms at
low energy.

40

4 DETAILED DISCUSSION: COMPUTE MODELS

One important practical consideration in building analog devices is system design.
Analog computers require much greater attention to design and calibration than
digital devices. Similar considerations apply when discussing neuromorphic design
which is a hybrid of digital design, for spikes and possibly weight storage and analog
design for non-linear neurons, synapses, and connections. However, the possibility of
using adaptation by learning algorithms may solve the problems of low precision and
calibration tuning.

4.4 Neuro-Inspired
4.4.1 Description
If the von Neumann style of processing is characterized by digital and logical computa-
tion with limited fanout across digital logic, separation of memory and processing with
a limited bandwidth communication channel for access, and stored program control of
the output, the pure neuromorphic style of processing is the polar opposite. In the
extreme, it is characterized by analog and approximate computation with high fanout,
where memory and processing are intertwined as the computation proceeds due to a
high bandwidth web of communication channels and where control of the output is
directed as a result of learning. Between these extremes lies a rich range of possibilities
for hybrid computation. Most neural network machine learning implementations use
a digital computer in which the neuromorphic architecture is simulated. Also, many
hardware implementations of neural network processors in analog CMOS use digital
pulses for communication and may store memories in digital form. This hybrid nature
reflects the preeminence and ubiquity of CMOS digital processing today and the ease
with which one can design working systems using CMOS.

The types of data processing problems best suited to this style of computing are
those that humans do better than von Neumann computers. This work includes many
natural, unstructured “big data” processing tasks such as data stream processing for
vision, hearing, and other integrated sensory modalities rather than pre-assembled
“batch” structured data processing such as that performed on databases. Typically,
the organization of a neuromorphic system for processing data and creating inferences
is created mostly by machine learning algorithms rather than strictly by rule-based
logic programming that is common for structured databases.

The great proliferation of machine learning algorithms and the continual progress in
improving inference and analysis indicate that machine learning is not yet a mature field,
and, therefore, any neuromorphic hardware should have some amount of configurability
and programmability to be flexible enough to incorporate new, improved algorithms.
These deficiencies imply that one should study the computational primitives associated
with machine learning and neuromorphic processing to be sure that the hardware
design allows for the inclusion of all primitives in a configurable system while still
offering energy efficiency and computational advantages.

Neuromorphic design is often characterized by dynamic analog ensembles that

41

4 DETAILED DISCUSSION: COMPUTE MODELS

are massively interconnected, with learning and reconfiguration locally calculated so
that there is limited need to move data long distances. This dependence on local
computation largely avoids the high energy expenditure associated with long-distance
memory accesses that is common in high-performance computing.

The intelligence and defense applications suited for this style of computation
include audio-visual surveillance, robotics, and semi-autonomous remote systems that
may include sensors and actuators. In addition, streaming data from web videos,
news sources, social networks, and other “big data” streams may be monitored with
intelligent neuromorphic processing in a semi-autonomous manner.

4.4.2 Algorithms/Processing
Neural-style processing is connection driven. Information flows along the connections
(synthetic axons, synapses, and dendrites) from one synthetic neuron to the next, each
of which generally performs a nonlinear transformation on the sum of input signal to
that neuron. “Knowledge” is encoded in the connection strengths (weights) through
a learning procedure, such as the Boltzmann machine algorithm [9], which adjusts
the values of the weights according to patterns at the input and output of the neural
network. Often, digital spikes are used for capturing temporal events using STDP
[97].

Neuromorphic processing can be performed using many different technologies.
Technology-specific discussion of neuromorphic computing styles can be found in
Sections 5.1, 5.3, and 5.4.

4.5 Quantum Turing Machine (QTM)
By the early 1980s it was known that due to the inherent nature of quantum mechanics,
classical computers could not efficiently simulate quantum systems. Quantum computing
originated with Feynman [45] as a means to naturally and efficiently simulate physical
systems. In pursuit of understanding the power of quantum computers for more
general computation, Deutsch [37] proposed a physical basis for the Church-Turing
thesis.3 Deutsch’s treatment showed that the QTM4 is inherently more powerful than
the classical Turing machine for certain types of problems. In particular, QTMs make
use of the quantum mechanical phenomena of superposition and entanglement, which,
for example, allow for “quantum parallelism.” Quantum computers are also the perfect
“analog” for quantum physics calculations, since they offer access to exponentially sized
state spaces and are governed by the same physical laws.

Perhaps the most famous application that could benefit from a quantum computer
is prime factorization. On a classical digital computer, the best known algorithm for

3The Church-Turing thesis states that functions are algorithmically computable if and only if they are
computable by a Turing machine.

4The term “universal quantum computer” is also used.

42

4 DETAILED DISCUSSION: COMPUTE MODELS

factoring scales superpolynomially in the size of the number to be factored. However,
with Shor’s algorithm, factorization requires a number of operations on a quantum
computer that polynomially in the size of the input number. For sufficiently large
problem sizes, quantum computing and Shor’s algorithm could obviate the need for
classical factoring. However, Shor’s algorithm and variants thereof can be used for
more than simply prime factorization. Shor’s algorithm can also be used for the
efficient solution of the discrete logarithm problem,5 and could therefore be used to
break the vast majority of public key cryptosystems in use (including, for example,
those based on elliptic curves). Although quantum computers that could attack
real-world problem sizes are far from being realized in the lab, cryptographers perceive
the threat as sufficiently worrisome that the study of “post-quantum cryptography” is
growing.

Since the IC is very familiar with the quantum model of computing, we forgo
more detailed discussion of the QTM. However, we make one point that we think is
particularly important. The power of quantum computing, like any computational
model, is intimately related to the algorithms designed for it. While we currently know
of one “killer” algorithm in Shor’s and a few other potentially useful algorithms (e.g.,
Grover’s), quantum computing is so recent in modern history and quantum mechanics
is so foreign to our intuition that many more useful algorithms may be waiting to be
uncovered. While the reasons we have not made more progress in uncovering such
algorithms have been hypothesized [115], we simply note that continued investment
in understanding quantum computing is clearly warranted.

5More generally speaking, the quantum period-finding algorithm on which Shor’s algorithm is based
solves the hidden subgroup problem over finite Abelian groups, of which prime factorization and the discrete
logarithm problem are two specific examples [see, for example, 66].

43

5 Detailed Discussion: Compute Technologies

This section considers the technology base used to practically realize a computation
model. These five technology bases are Digital CMOS, Superconducting, Analog
CMOS, Biomolecular, and Quantum Technologies. Each section presents Findings
that mostly describe key characteristics including capabilities and limitations of this
technology.

5.1 CMOS and Beyond CMOS for Conventional CMOS
Computing
CMOS technology is used for digital integrated circuits, analog circuits, MEMS, and
integrated transceivers for communications. Patented in 1963, CMOS is ubiquitous
today and is anticipated to extend into the future—how far is uncertain. Conven-
tional CMOS computing uses this technology to implement microprocessors, memory,
controllers, and network interfaces that are components in modern computer archi-
tectures. CMOS technology has been used extensively for over 30 years mainly due
to significant evolution over time. Feature size of transistors and wires has shrunk
from 10,000 nm6 to 22 nm. The number of transistors per processor has increased
significantly due to the smaller sizes of transistors, denser packaging, and larger wafer
sizes. It is anticipated that feature size will decrease to 14–16 nm in 2014 and less than
10 nm by 2020, approaching 5–7 nm in 2025. The lowest-level components used to
develop devices have changed more than in just size, as new implementations have been
needed to overcome problems as transistor size shrinks. In the past, computational
capability increased by increasing the clock speed—more work was done sequentially
per unit time. This increase in clock speed is no longer the case. Clock speed for
CMOS has largely stalled and the additional transistors are used to increase the
number of processing cores on the CPU.

Historically, the development period between the choice of a research technology
and initial production is usually 24 months. Wafer production ramps up to full scale
volume in 24 months after initial production. Thus, it takes only 4 years from a
research proof-of-concept design of a new transistor to full production. With this rapid
research to production cycle, it is difficult to predict the specifics of future CMOS logic
devices. It is anticipated that by 2020, Beyond CMOS capabilities will be available to
augment the capabilities of CMOS. Thus, the baseline device construction technology
against which all others will be compared will be either CMOS or Beyond CMOS
depending on the timeframe.

The ITRS examines the state of semiconductor technologies and emerging research
devices to assist in directing research and development to move this field forward. It is

6The Intel 4004, the first integrated circuit microprocessor, had a linewidth of 10 µm [2].

45

5 DETAILED DISCUSSION: COMPUTE TECHNOLOGIES

important to note that many areas are driving semiconductor research, including radio
frequency, analog, mixed-signal, and MEMS. The commercial sector will provide a
substantial portion of the research and development funding for the technologies used
to further CMOS and Beyond CMOS technologies. Meanwhile, the commercial sector
may have future requirements that do not meet the needs of the HPC community.
The needs for low-power consumption in a handheld, end-user device may drive the
research to different technologies than those required for massive calculations in HPC.

5.1.1 Technologies

One of the most significant drivers in feature size reduction will be to find new materials
and system designs that will reduce power consumption. CMOS replaced N-type
metal-oxide-semiconductor (NMOS) logic because CMOS logic dissipates less power,
only requiring power when dynamically switching. As CMOS feature sizes have shrunk,
transistor switching times have slowed and new forms of NMOS transistors (that have
leakage voltages approaching CMOS dynamical switching) have been used to reverse
this trend and increase switching speeds. It will be imperative that new generations
of High-K dielectric materials are found, along with new materials to replace stressed
silicon. New electrostatic control structures such as multi-gate on enhanced silicon on
insulator (SOI) will be required. Delays in any of the supporting technologies may
provide enhanced opportunities for exotic Beyond-CMOS technologies.

The Beyond CMOS community is very conscious of the issue to reduce power, while
providing the levels of performance needed for some applications. The extreme power
reduction community is examining low-power tunnel field-effect transistors (FETs).
The device performance community is examining new technologies to augment CMOS
with faster, more efficient transistors (e.g., the use of carbon nanotubes).

In the interim, technology packaging may offer ways to attack the power consump-
tion of processing systems. Significant research investment into PIM technologies
has demonstrated the utility of the concept, but the technology has proven difficult
to build because DRAM manufacturing technologies have proven ill suited to build
processor components. Another option being examined is stacked memory integrated
with a processor, or processor-under-memory (PUM) technology. Currently, this
technology has encountered problems with dissipating heat generated by the processor.
Another packaging solution may be to expand the system-on-a-chip concept to the
wafer-scale with multiple processors tightly integrated with 3D stacked memory. The
interconnection network could be embedded in the wafer, with routing technology
integrated onto the wafer. This concept may be able to reduce racks of equipment to
the individual wafer scale, significantly reducing power consumption and improving
performance

46

5 DETAILED DISCUSSION: COMPUTE TECHNOLOGIES

5.1.2 Conventional Algorithms and Processing
For HPC, CMOS is considered synonymous with digital computing. Issues with
reducing power may require stochastic or probabilistic computing algorithms to
provide answers with predetermined accuracy if the power reductions cause less
reliable operations. Holistic design will be significant as CMOS and Beyond CMOS
technologies move into the future. It will be important to design systems that make
the most power-efficient use of available processors, memory, and interconnection
networks while optimizing performance on specific applications of interest. The fact
that few or no changes will be required in algorithms or programming models, also
supports the desire for CMOS and Beyond CMOS to be the baseline device platform
against which all others will be compared.

5.2 Digital Cryogenic Superconducting
Cryogenic Superconducting computing may offer an attractive low-power alternative
to CMOS with many additional potential advantages. Josephson junctions provide for
devices with rapid switching, permit processor clock rates of 100+ GHz, dissipate little
energy per state change, and communicate information via small, nearly lossless current
pulses. Past research into the components of cryogenic superconducting computers
were met with significant technical obstacles that prevented serious exploration of
superconducting computing. However, recent research has provided innovations that
create the foundations for a major breakthrough. New single flux quantum (SFQ)
logic circuit technology has no static power dissipation, reducing power and heat. New
energy-efficient cryogenic memory will permit the implementation of complete HPC
systems within the cryostat, including both cryogenic processors and memory.

Studies indicate that superconducting supercomputers may be capable of providing
1 PFLOPS7 (or 1 PIOPS) for about 25 kW and 100 PFLOPS (or 100 PIOPS) for about
200 kW, including the power to operate the cryogenic refrigerator [61]. Power budgets
for systems based on commercial, 60 Hz cryogenic refrigerators are estimated to be 67
GFLOPS/J for a 1 PFLOPS system, improving to 500 GFLOPS/J for systems 100×–
1,000× the computational performance of conventional supercomputers. Refrigerator
efficiency improves considerably over this range and provides a significant contribution
to reach system efficiency goals with 100–1,000 PFLOPS systems. Refrigeration
systems are commercially available, with the product driving the market being the
use of superconducting magnets in Magnetic Resonance Imaging (MRI) systems.

Cryogenic superconducting computing research has been limited to developing
system components with no initiative focused on integrating components into a system.
As an essential first step to reduce risk, IARPA’s C3 Program will be an attempt
to develop proof-of-concept technologies integrated into a system at smaller scales
before any attempt to build a superconducting system at scale. The C3 program

7A FLOPS is a floating point operation per second. 1015 FLOPS is a peta-FLOPS (PFLOPS), and 109

FLOPS is a giga-FLOPS (GFLOPS). Similarly, an IOPS is an instruction operation per second.

47

5 DETAILED DISCUSSION: COMPUTE TECHNOLOGIES

will address the challenges of providing sufficient amounts of amply fast cryogenic
superconducting memory, adequate integration density, and a realization of complete
superconducting HPC systems. The C3 Program will address these challenges with
the goal of establishing superconducting computing as a long-term solution to the
power-heat dissipation problem. Thus, cryogenic superconducting technologies may
challenge CMOS and Beyond CMOS for power-efficient HPC at scale. The success of
C3 may pave the way for a new generation of superconducting computers that are
scalable, useful for a wide range of user applications, and far more energy efficient
than end-of-roadmap CMOS.

5.2.1 Technologies
The state-of-the-art research in cryogenic superconducting computing is currently
using niobium as the superconducting material with which to build the SFQ Josephson
junctions. As research progresses, other materials may provide better feature scaling
or performance. The field has to be expanded to learn more about a broad range of
materials and device components. With advances in cryogenic refrigerator technology,
some advanced CMOS and Beyond CMOS technologies may become so sufficiently
energy efficient at low temperatures that they may become viable technologies while
being adequately low energy. Significant advantages may be possible if the capability
exists to run similar Beyond CMOS technologies at room temperature for small
systems and at 4 K for systems at scale. Such systems could be holistically designed for
particular algorithms. Design work could progress on small systems, while applications
at scale would run on systems with greatly reduced power consumption when compared
to scaling systems of similar materials at room temperatures.

Some packaging technologies for CMOS devices may encounter heat dissipation
problems that may be readily surmountable in a superconducting environment. It
may be possible to implement packaging designs such as processors under (stacked)
memory in a cryogenic environment where heat dissipation may make such packaging
unusable at room temperature. If the materials have superconducting characteristics,
very little heat may be generated, providing the utility of large quantities of memory
residing close to very fast processors.

With such possibilities to provide low-power HPC at scale, providing adequate
funding to grow the superconducting computing community may be required. While
potential advantages for HPC at scale are significant, the advances will be funded
by the commercial community. The current drivers for low power devices, mobile
computing and communications, will have little impact on the cryogenic supercon-
ducting computing community. Thus the USG may have to shoulder the responsibility
to fund research and development in this area.

48

5 DETAILED DISCUSSION: COMPUTE TECHNOLOGIES

5.2.2 Algorithms/Processing
Because of similarities in programming models and general similarities in algorithms
between conventional CMOS and cryogenic computing technologies, it is simple to
compare requirements of superconducting technologies with previous activities like
the Defense Advanced Research Projects Agency (DARPA) Exascale Report and the
recent JASON study on Exascale Computing for DOE. This comparison is only a first-
order estimate because any new system—including a cryogenic superconducting-based
system—should be designed in a holistic co-design manner that will likely modify the
algorithms and architectures and the technology in the future as research progresses.

The DARPA Exascale study assumed that the 1,000× performance improvement
needed to move from Petascale to Exascale would come entirely from incorporating
additional processors into the machine, which would further compound programing
challenges with the additional threads and concurrency. Meanwhile, superconducting
technology will offer faster processors that may enable easier scaling to extreme levels
such as Exascale. It was assumed that with conventional CMOS, faster processors
would cause issues with power consumption and would stress the memory system.
Thus, it was assumed that processor speed would remain basically constant. All
scaling would come from weak scaling8 where problem size would need to be increased
to keep the amount of work constant as additional processors were assigned to the task.
Increased problem size affects the amount of memory, the size of the interconnection
network, and the amount of intermediate storage. Scaling of computation size depends
on the application, but the sweet spot in memory size assumed a scaling where memory
increased by a factor of approximately 100× vs. 1,000× because of the constraint
on processor speed. Meanwhile, with faster processors (if memory access time is
proportional to the increased speed), less of the 1,000× performance improvement
would need to come from weak scaling. For a 100GHz processor, the memory size
increase would be just 11.7×, reducing the amount of memory from 50 PB to under 6
PB. Similar reductions in interconnection network and intermediate storage would
have an effect of reducing power consumption for the entire machine, likely by an
additional order of magnitude over standard (room temperature) CMOS.

Cryogenic superconducting will support standard digital computing, thus likely
requiring few or no changes in algorithms or programming models. It offers a way
forward where much of conventional CMOS computing has equivalent and similar
counterparts in superconducting technology but offer the potential for several orders
of improvement in performance (reduction in electrical power and computation time).

8Weak scaling and strong scaling refer to the following behavior when dedicating more compute resources
(e.g., nodes in a cluster) to a problem of a given size. In strong scaling, the problem size is fixed and the
additional compute resources allow the calculation to be completed more quickly. In weak scaling, the amount
of work per compute element is fixed, and the additional compute resources allow for a larger calculation
size. As discussed in the text, it is likely that some problems which are currently in the weak scaling regime
on current commodity hardware will be in the strong scaling regime on future alternate computing platforms
(e.g., superconducting). The strong scaling regime is preferable since it can be used to reduce calculation
time.

49

5 DETAILED DISCUSSION: COMPUTE TECHNOLOGIES

Holistic design will be significant as cryogenic superconducting technologies move into
the future. It will be important to design systems that make the most power efficient
use of available processors, memory, and interconnection networks while optimizing
performance on specific applications of interest.

5.3 Analog CMOS
Analog electronic design is a very mature field and is ready for deployment. However,
the additions needed for scalable neuromorphic computation such as CMOS-ready
synapses and hardware-friendly algorithms are still in the research phase. Small
scale demonstrations on toy problems exist given current technology (floating gate
or large circuit synapses and simple local learning algorithms) but the synapses and
algorithms needed for massive streaming data and sophisticated, knowledge-based
analyses do not exist. Analog electronics scales roughly like digital electronics so
the end of Moore’s law will limit scalability in analog CMOS. However, new devices
such as memristors and new hardware architectures such as 3D and self-assembly
can continue the scalability of electronic systems. Neurobiology shows the way to
a self-assembled existence proof of scalable, low-power computation. Investment to
create the technical breakthroughs in silicon synapses, self-assembly, and scalable
temporal learning algorithms can return large dividends in solving real-world problems
in multi-modal surveillance and robotics.

There have been 25 years of effort in electronic implementations of neuromorphic
systems. These systems have included analog and digital systems, with many being
a hybrid, mixed-signal approach. Virtually all of these efforts were implemented
in CMOS very large-scale integration (VLSI). The work has become increasingly
sophisticated in recent years, with a variety of sensors, interconnect methods, and
circuit types for neurons and synapses [9, 48, 59, 62, 63, 80, 92, 93, 97, 107, 110].

Some semi-standard methods have evolved that many in the neuromorphic engi-
neering community use. For example, there are silicon retinas that respond only to
spatial or temporal variation across pixels [78, 83]. There are silicon cochleas. There is
a digital spike communication scheme called address event representation (AER) [130]
which is energy-efficient and space-efficient between CMOS chips. There are local
learning rules some of which involve STDP [34]. There are semi-standardized design
languages and abstraction methods such as the Neural Engineering Framework (NEF).
The European Union (EU) has supported much of this work, which is continuing with
two large projects as part of the Human Brain Project (HBP). There are stochastic
computation methods and event-driven asynchronous approaches to computation.

New devices that seem appropriate to neuromorphic CMOS are being actively
investigated, including memristors, phase-change memory, and spin-torque devices
[12, 74, 85, 96, 113, 111] for compact and simple-to-update synapses. There are
many more synapses than any other component in neuro-inspired designs, so compact
implementations are required. Furthermore, these synapses are fairly complex if they

50

5 DETAILED DISCUSSION: COMPUTE TECHNOLOGIES

implement learning algorithms.

For electronic implementation, because the fanout of connections from each neuron
is high, generally one takes advantage of multiplexing on a metal wire, using a protocol
like AER, to create many connections on a single wire. In the brain, these connections
are not multiplexed, so that most of the volume of the brain consists of connections.
On a 2D microchip, the problem would be even worse. In addition, it is important on
chip to have compact weighted connections (because there are so many) that must
retain the results of learning in some form of memory. This is why there is intense
interest in creating an analog, resistive, compact connection using memristors that
can adjust their conductance according to the signals connecting to them locally.
Another popular method for synapses involves using an analog charge that is stored
on a floating gate [60].

Neuromorphic analog computing has demonstrated that for some algorithms and
tasks, it is faster than digital computing and generally much lower in power dissipation.
Why then, after 25 years of effort, is it still in the province of toy problems and has
not had much impact on practical problems in robotics and surveillance? Partly,
the answer lies with the success of the digital semiconductor industry over the same
time period driven by the exponential increase in capability guided by Moore’s law.
Intel invested in floating gate synapses for hardware neural networks but saw greater
opportunity in scaling digital CMOS and ended the project. Now that we can see the
end of Moore’s law on the horizon, we have an opportunity to take another look at
this alternate computing style.

What is missing in serious neuromorphic computing is a robust and compact synapse
technology that can be well integrated with CMOS. The TRL of analog CMOS is
extremely high but not so the additions necessary to make it suitable for neuromorphic
implementations, which are in the research stage. So far, memristors have shown
promise but the technology is not yet ready to replace semiconductor memory, although
Samsung, Hewlett-Packard, and Micron have serious efforts in phase change memory
and Micron is offering a memory product. Perhaps further development will create
a reliable synapse technology that can work with an appropriate, hardware-friendly
learning algorithm, especially if a commercial path to a product exists.

Another strong need is a hardware-aware, temporal learning algorithm that can
work in large hierarchical networks to create compositional representations. A version of
STDP that works on a compact hardware synapse and that could create compositional
representations of temporal events and hierarchical sequences would be a major
breakthrough. A demonstration of usefulness for a large scale surveillance problem
might be needed to show success. Metrics should include compact size and low power,
say a thousand-fold better than digital CMOS. The European CAVIAR project [109]
is an ambitious example of a vision system that did not quite show usefulness but has
many of the right pieces. Funding an application-driven effort of this sort may bring
all the necessary pieces together.

51

5 DETAILED DISCUSSION: COMPUTE TECHNOLOGIES

A promising approach might be to allow machine learning research in neuromorphic
algorithms, architectures, and representations to guide hardware development. A
commitment to digital simulations of neuromorphic hardware before development
represents a low-cost approach that can be part of an investment strategy. The
neuromorphic engineering community is beginning to pay more attention to the
progress in the machine learning community, especially the success of the neural-
network-driven deep learning research.

5.4 Biomolecular
In 1994 Leonard Adleman introduced biomolecular computing to solve combinatorial
problems using molecules of DNA [7]. Bimolecular computing9 remains an active area
of research and, over time, has proceeded down three distinct areas of research: DNA
computing, Molecular-tile computing, and Molecular computing. The goal of DNA
computing and Molecular-tile computing is conventional Turing-machine computing
executed using DNA molecules, though ultimately Molecular-tile computing may have
more applicability as a nanotechnology. Both of these lines of investing sought to
exploit the high degree of parallel execution afforded by molecular interactions in
solution. Molecular computing is focused on the control of naturally occurring and
synthetic biological systems and uses mostly elements of digital and more recently
analog operations for its computation needs.

5.4.1 DNA-computing
DNA-computing encodes information using oligonucleotides and exploits the ligation
and Watson-Crick pairing of nucleotide sequences for processing. The first DNA-based
calculation was finding a Hamiltonian path for the famous Seven Bridges of Konigsberg
problem. The calculation required nearly 7 days of lab work [7].

Computation power, in general, is a combination of the number of steps executed
in parallel and the rate of execution (number of steps per unit time). This style
of computing leverages the high number of concurrent molecular interactions. One
gram of DNA material contains about 1021 base pairs. A basic operation (after the
information has been encoded into the oligonucleotides) takes hours, with estimates
of 10 operations per day and up to 100 operations on the optimistic side [71]

This high degree of concurrent interaction motivated the search for molecular
algorithms that could be useful for solving NP-hard problems. It was known that
even with this degree of concurrency, exhaustive search of the solution space that

9This section is restricted to computation using organic molecules (ones that contain carbon) and are
commonly found in living systems. Computation using inorganic molecules is also possible and has been
investigated, though not nearly as thoroughly as computing with organic molecules. This restriction was
necessary because of schedule. The topic of computation with inorganic molecules merits a close examination
for completeness.

52

5 DETAILED DISCUSSION: COMPUTE TECHNOLOGIES

scales exponentially was not practical. For example, Boolean satisfiability is an NP-
complete problem with exponential computation time on a conventional computer.
DNA algorithms for Boolean satisfiability of expressions with M clauses and N
variables need M processing steps using 2N strands of DNA. DNA computing trades
the exponential complexity present in the number of steps in conventional computing
for an exponential number of resources in the form of strands of DNA and a linear
number of steps with problem size. This solution is not practical. Using all of the
material in the universe would be required to solve a problem having ≈ 250 variables
via this method. Such is the case for other DNA algorithms for NP-hard problems.

In 1995, JASON provided an example of using DNA computing to break 56-bit
Data Encryption Standard (DES) using Lipton’s algorithm [22, 76], which required
100 processing steps and 4 months of reaction time [71]. They concluded that
by DNA computing did not afford any practical advantage for breaking DES over
building conventional custom hardware, with the possible exception of a reduction
in development time for the DNA solution given a general-purpose DNA capability.
Furthermore, as they pointed out, their analysis did not account for error in the DNA
computation.

5.4.2 Molecular-Tile Computing
One fundamental limitation of DNA computing is the one dimensional (1D) nature
of ligation and annealing of an oligonucleotide to its complementary oligonucleotide.
This one dimensional aspect limits the computation to proceed by growing longer
and longer DNA molecules. While there were a number of proposals to extend DNA
computing into a universal Turing Machine [14, 101, 117], none appeared practical,
which is also likely why they were never realized. An alternative was the introduction
of Molecular-tile computing that allows for the calculation to proceed in two (or
more) spatial dimensions. Double-crossover (DX) molecules consist of two side-by-side
double-stranded helices linked at two crossover junctions, giving them a tile-like nature
with edges composed of single strands of DNA [47, 73]. These tiles can stick to edges
of other tiles that have the complementary DNA sequences. Proceeding in this way,
2D structures can be grown that are calculations.

Molecular tiling is Turing complete and, hence, is capable of the same computation
as conventional computing. Ideal tile calculations (for which the bonding of two
tiles is perfect) are first described by Wang in 1960 [123] and are later shown to be
Turing complete [100]. Rothemund and Winfree extended this theory by including
a parameter describing the cooperativity of tiles to bind. They also establishes that
molecular tiling is Turing complete provided the binding parameter exceeds a threshold
[103].

Winfree was the first to demonstrate tile computing in 1998 [125, 128]. This
demonstration used only two tile types and was more a demonstration of programmed
self-assembly rather than a calculation. Subsequent demonstrations have shown

53

5 DETAILED DISCUSSION: COMPUTE TECHNOLOGIES

cascaded exclusive OR (XOR) operations and counting to 17 with several errors [13].

Like any crystal growth technique, molecular-tile computation is governed by
thermodynamics. Winfree analyzed the thermodynamics of DNA self-assembly through
DNA hybridization and determined that the lowest error rate occurs at the melting
temperature when crystal growth is slowest and that error rates can be made arbitrarily
low by decreasing concentration and increasing binding strengths [127]. In other words,
the rate at which tiles attach is only slightly greater than the rate at which they release.
Large molecular-tile calculations require low concentrations and, hence, computation
proceeds very slowly. There has been some thought on the thermodynamic is truly
a fundamental limitation and speculation on ways to get around it, including local
parallelism [98] and use of an additional energy source for biological proofreading [69].
No experimental evidence supports these approaches for molecular-tile computing.

Algorithms for molecular-tile computations have also been explored. The best
nondeterministic molecular-tiling algorithms for Boolean satisfiability [27, 28] of
expressions with M clauses and N variables are linear in time with M and use 64 tile

types. The probability of success per attempt is at least
(
1
2

)N
. Hence, a calculation

using an exponential number of seeds, 2N , has a 63% probability of success. Similar
results hold for factoring integers [26] using Molecular-tile computing. Factoring an
N -bit number can use a constant number of tile types with a probability of success of(
1
6

)N
. Similarly, using 6N seeds has a 63% chance of correctly factoring the number.

These results should not be surprising. Molecular-tile computation is still a
Turing-machine model of computation, and, consequently, the overall complexity of
the problem remains exponential. Rather than running a single calculation with
exponential running time on a conventional computer, Molecular-tile computing
(and DNA computing) simultaneously runs an exponential number of linear-time
calculations. The overall amount of work is still exponential. While these two forms
of bimolecular computation are able to achieve an unprecedented amount of parallel
computation compared to conventional computing, the exponential growth of molecules
needed for the computation still limits biomolecular to rather modest-sized problems.

More recent work in this area has shifted from self-assembly (of molecular tiles)
for computation and towards understanding self-assembly of 2D and 3D structures
[39, 41, 102]. This ability to engineer higher dimensional structures and combine them
with elementary biomolecular logic operations is finding novel application in Molecular
computing systems [40]. Douglas et al. fabricated an autonomous DNA nanorobot
capable of transporting molecular payloads selectively to biological cells. The selection
mechanism used an aptamer-encoded logic gate to sense cell surfaces and deliver the
payload to the cell [40]. This application of engineered nanostructures and molecular
computing may represent an important future drug delivery mechanism.

54

5 DETAILED DISCUSSION: COMPUTE TECHNOLOGIES

5.4.3 Molecular Computing
Both DNA computing and Molecular-tile computing were primarily addressing hard
computational problems. Molecular computing is developing approaches to incorporate
elemental processing into biological systems. The Molecular computing perspective
incorporates elements of systems biology, chemical reaction networks, and control
theory to provide molecular-based solutions for information-processing tasks in natu-
rally occurring and synthetic biological systems. It is not primarily driven by compu-
tation scale or speed. Rather, it is focused on the need to work in a biological
environment. Driving applications for Molecular computing are in medicine, energy
production, and environmental engineering.

Molecular computing has mostly been focused on elementary logic operations
and limited efforts with state machines. It is still in its infancy. Recently, there
has been increased interest in analog computing, primarily as a way of coping with
limited computational resources in biological systems. Viewing molecular computing
in isolation as a computing technology is misleading. Rather, it should properly be
viewed as an elemental technology in a complex system. This view will drive its
development. However, it may also be a disruptive technology and find applications
not originally envisioned.

The range of work in this area is vast and cannot be completely summarized in
this report; however, we will give a few select examples of the technology. There are
excellent recent reviews of the technology [17, 86] and some of the broader issues
[29, 31, 43, 67, 68]. Molecular logic computing devices have used DNA, RNA and
protein molecules.10 Time scales for logic operation range from 10 seconds to days
for in vivo and range from hours to days for in vitro depending on the mechanism11.
DNA-based gates have operation times on the order of hours, which is the same time
scale for DNA-computing described earlier. In that case, the computational power
stems from the degree of concurrency and not from the speed of interaction. All three
molecules have been shown to work in vitro and in vivo. Unlike transistors, which
stay put on the chip, molecules in solution move, and, consequently, this causes many
unwanted interactions that limit scalability in vitro. One important feature of in vivo
technology is the cell boundaries that limit unwanted interactions. Another challenge
has been building networks of logic devices, which requires the output of one logic
element to serve as the input of another element. Many of the demonstrations are
inherently not cascadable, though some, including DNA logic circuits and protein-
based enzymes, have demonstrated cascaded operation [88, 94, 95]. DNA interactions
can be readily interpretable in terms of conventional logic, whereas many of the other
mechanisms used for logic do not allow for this interpretation. For example, consider
elementary logic performed with RNA devices [125]. These devices process molecular
input to targeted protein outputs. The authors demonstrated operation of an AND
gate that only responded with high production of green fluorescent protein (GFP)

10Table 1 [86] provides a concise summary of these demonstrations as of late 2012.
11See Figure 2 [86] for the time scales of the various mechanisms.

55

5 DETAILED DISCUSSION: COMPUTE TECHNOLOGIES

when the level of theophyline and tetracycline were sufficiently high.

Demonstrations have also included state machines. Ultimately, this direction can
lead to low-energy computation as discussed by Bennett [20] and can be realized,
in principle, with RNA molecules. Bennett refers to this as Brownian computing.
Another feature of this low-energy computation is that it is only low energy when
the computation proceeds slowly. Hence, computational power in this situation stems
from performing many operations in parallel with a minimal number of sequential
steps. This theme is common and recurrs often in biomolecular computing.

In 2003, Stojanovic and Stefanovic demonstrated a DNA-based molecular automaton
capable of interactively playing tic-tac-toe against a human opponent [121]. It incor-
porated 23 molecular-state logic gates and optically active DNA arrayed in nine wells
(3 × 3) array. In 2004, Benenson et al. demonstrate a molecular computer for logical
gene control [18]. The system operated in vitro to sense and analyze the levels of
messenger RNA and, in response, produced a molecule capable of affecting the level
of gene expression. State machines have also been constructed in vivo [11].

More recently, molecular computation has also been used for analog computing.
The motivation for this stems in part from the need to do efficient computation in the
resource-limited environment of cells. Daniel et al. demonstrated analog computation
in living cells using just three transcription factors [35]. They demonstrated an
analog adder circuit that summed the molarity of two different protein inputs. This
demonstration is a first step towards multi-signal integration and processing.

5.4.4 Neuromorphic Computing
Compared to the proliferation of CMOS designs, there have not been many attempts
at using bio-molecular methods to implement neuro-inspired computational designs.
Given the recent dramatically increasing accumulation of knowledge in neuroscience
and bio-molecular methods, new computational techniques may become available in
the near future. In particular, more experimental details on STDP [34], and learning
in biological neurons and synapses may inform computational methods of how to learn
temporal patterns in a hierarchical structure that has semantic significance.

The burgeoning field of synthetic biology has spawned convincing recent demon-
strations of analog and digital computation [33, 42, 46, 49, 51, 57, 87, 99, 126] that
have been engineered using synthetic biology methods. These methods can lead
to computers, that operate on biochemical and optical inputs. The computers will
be much slower than electronic computers, but can compute with very large-scale
parallelism on a molecular or cellular scale. For general computation, a method
of interfacing with existing data sources is needed. Optogenetic [23, 75] methods
for neuromodulation in nerve cells may be adapted for such purpose. However, it
seems unlikely that sufficient data bandwidth would be available to fully exploit the
computational parallelism of bio-molecular computing.

All of the biomolecular technology is at the lowest TRL. Basic principles have

56

5 DETAILED DISCUSSION: COMPUTE TECHNOLOGIES

been demonstrated and reported. The community regarding the technology concept
and application area. DNA computing has the potential to rapidly advance; however,
it lacks a driving application. Because DNA computing is nearly 20 years’ old, this
situation is not likely to change. Molecular-tile computing as a means of calculation
(as opposed to a technology for self-assembly) shows more potential, but no clear
case has been presented that shows its advantage. This area needs to be further
explored. Molecular computing is still in its infancy. Its potential is high and will
ultimately be driven by the industrial bases it serves: medicine, energy production,
and environmental engineering.

At present, all of this technology is prone to errors and is not robust. Polymerase
chain reaction (PCR) amplifies DNA and has an error rate of one base pair in 105. If
PCR is a significant part of the calculation (rather than just a read-out technology),
then the errors caused by PCR can be critical and need to be addressed. Many of the
Molecular computing logic gates depend on chemical concentrations, and verifying
that a biological computation circuit computes according to specification under all
possible conditions is challenging, and even more so for in vivo.12

5.5 Quantum Technologies
Many candidate material systems have been proposed, and their properties have
been explored as candidates for building a quantum computer. Some are better
than others, of course, and some are not even acceptable. The three most viable
material systems—trapped-ion, superconducting, and solid-state—are discussed in
this section. Of these, trapped-ion is by far the most mature, though questions remain
regarding its scalability. Although not as mature as trapped-ion, approaches based
on superconductivity are maturing, and have demonstrated multiple gate operations
many times. Of the three, solid-state is the least mature but ultimately offers the best
chance for scalability. Solid-state has been a catch-all for many different approaches
based on condensed-matter material systems. The discussion here is restricted to
electrically addressed quantum dots in gallium arsinide and silicon and dopants in
silicon. These approaches were selected because of their ability to be controlled
electrically. The most notable omissions from this list are optical quantum dots and
vacancies in diamond, both of which would be controlled via optical signals rather
than electrical signals.

These choices were made for practical reasons. Optical beams present challenges
in addressing and controlling a large number of qubits. Although optics may be
needed for connecting multiple quantum processors at some point in the future,
the most sensible approach at present is to place as much capability into a single
processor before considerin scaling through sharing of quantum information between
many discrete processors. The optical requirements are also present for trapped-ions
(though some schemes hold out the possibility of using microwaves) and add significant

12See the Methodological Section [17] for additional details

57

5 DETAILED DISCUSSION: COMPUTE TECHNOLOGIES

complications to the system. A guiding principle in making these choices has been to
examine the supporting technology necessary to realize a quantum computer. In this
case, supporting technology includes all of the ancillary technology, such as packaging
and control that will be necessary to realize a quantum computer. Reasoning along
these lines leads one to conclude that, as valuable as wires and electrical control
have been to transistors, they will also be as valuable and economical for quantum
technology in the long run. Hence, those technologies that are best able to leverage
off the silicon VLSI industry stand the best chance of producing a capability quantum
computer—a quantum computer capable of significantly outperforming the largest
practical classical computer.

Although some technology may encounter practical limits, it may still be useful
for capability quantum computers. For example, a quantum computer for quantum
simulation may only need on order of 100 qubits to be of computational value, whereas
quantum computers capable of factoring 1,000-bit numbers may need 100,000 to
100,000,000 qubits, depending on the resource needs for fault tolerance. Hence,
material systems that are limited in scalability may still be of practical value for
certain classes of problems, whereas other problems will need a technology that is
intrinsically more scalable. Hence, a technology that may not be inherently scalable,
such as trapped-ion, may nevertheless be valuable for other applications while also
being useful as a stepping stone towards quantum computers of incrementally higher
capability.

Interest in quantum computing took off in 1994 with the discovery of Shor’s
algorithm for factoring numbers. In the intervening 20 years, while much progress
was made, a logical qubit has yet to be demonstrated. A logical qubit is one that can
retain its quantum state for the duration of the calculation. Recently the the first
demonstration of extending the coherence lifetime through quantum error techniques
has been demonstrated; however, there is still a long way to go. It is important to
keep in mind that the challenges faced by each of the three material systems are
quite different. Nature presented trapped-ions with a high-precision qubit. This is
not the case with either superconducting or solid state. As a consequence, solid-
state is still trying to build a reliable qubit, whereas trapped-ion could largely skip
this step (though it was necessary to learn how to hold and manipulate the ions).
Superconductivity is positioned between the two. Qubits are defined lithographically
and fabricated using approaches similar to those used in electronics. Each of the three
approaches has its own advantages and disadvantages. Furthermore, because we are
still at such an early stage, the most informative strategy is to continue development
on all three approaches. One benefit of this strategy is that trapped-ion, for instance
is experimentally investigating interaction among multiple qubits that may likely
impact the architecture and design of other approaches. For example, research at The
University of Innsbruck has observed that the practical effects of correlated noise have
a significant impact on decreasing the coherence lifetime of the qubit [5].

58

6 Potential Follow-On Work: Deep Dives

At present, there is no alternative to the silicon device platform offers a clear and
compelling computational advantage across a broad spectrum of applications. Although
the silicon device platform will continue to evolve over the next several decades driven
by industry’s $50 billion per year investment, the direction will be focused on the needs
of large consumer markets and will likely not be optimal for many IC applications. In
this chapter, we offer a vision of computing based on the silicon device platform and
outline an investment strategy to expand computational capabilities of core interest
to the IC and to accelerate the development of select computational capabilities of
common interest. We assume that silicon can comprehensively provide for classical
digital, neuro-inspired, and analog computational styles. It may even be the best
choice for digital quantum computation, though that idea will not be explored further
in this chapter. The ideas present in this chapter should be regarded as a starting
point and merit a more detailed exploration before committing to a way forward.

The overarching premise of this vision is that fully leveraging the market-driven
investment of the commercial sector in the silicon platform is not only low risk, but
also offers the best return on investment. Consequently, the focus of strategy is on
leveraging the silicon device platform. Smart investment will provide innovation over
the next two decades. On a longer time-scale, synthetic biology may offer a disruptive
computational platform for select applications and should be watched. Commercial
investment for synthetic biology will come mostly from medicine, energy production,
and environmental engineering applications. It is unlikely that synthetic biology
will provide a computation platform as versatile as silicon; nevertheless, it may offer
significant advantages for neuro-inspired computing. These advantages may extend
to analog computing but it is unlikely that high-performance digital computing will
realize any advantage.

This investment strategy is developed around the the styles of classical digital,
neuro-inspired, and analog computing, in that order. Of the three, classical digital
computing will receive the most attention from industry, and making progress in
this area will require need commercial relationships with industry leaders. The other
two styles, neuro-inspired and analog, receive much less attention from industry and
consequently present different challenges. The challenge for neuro-inspired stems from
needing a strong focus at the device level, guided by synergistic interaction across
algorithms, neuroscience, and engineering. From an IC perspective, analog computing
is challenged by a lack of applications in the IC. In this study, we uncovered approaches
for mapping hard discrete math problems (Boolean satisfiability) onto dynamical
systems, with the potential of solving these systems using analog computation. The
ultimate goal is to develop mixed computation style devices (i.e., devices capable of
supporting Boolean computation, neuro-inspired computation, analog computation,

59

6 POTENTIAL FOLLOW-ON WORK: DEEP DIVES

and possibly some day, quantum computing). The approach is to tactically focus
on each style separately at the device level while strategically focusing the goal of
mixed-style devices.

6.1 Classical Digital Computation
The following topics merit further exploration towards expanding future capabilities
of classical digital computation:

• New memory technology for static random-access memory (SRAM).

• Scale CMOS to its practical limit,

• Device technology alternative to CMOS,

• Extend CMOS to a heterogenous integration platform,

• Develop new functional computational cores, and

• Theory and practice of PIM computing.

The first four of these focus area are listed in the ITRS roadmap as long-term
challenges [3] in the emerging research devices and materials section. An approach
coordinated with industry will be needed. The last two focus areas are focused towards
providing new computational capabilities at the functional and system level.

6.1.1 New Memory Technology for SRAM
SRAM memory cells are large, leading to low integration density, and can be a
significant portion of the chip power budget. DRAM is significantly lower power but
cannot be embedded on processor chips. Industry focus is on replacing SRAM and
possibly FLASH memories by 2018. Embeddable memory provides for architectural
options, such as PIM and other functional cores. Because industry is facing significant
limitations with current approaches, it is aggressively pursuing alternatives, and
investment by the IC is not recommended at present. Nevertheless, the IC will benefit
by closely following progress.

6.1.2 Scale CMOS to its Practical Limit
This is a core challenge for industry and consequently requires no investment from
the IC. Industry predicts to reach this goal in the 2023 timeframe. Furthermore,
the projections are that the gate length will be only 3x larger than the fundamental
limit of scaling an electronic charge-based switch and that the scaling is practically
limited by the maximum allowable power dissipation of ≈100 W/cm2 [131]. Even
if unforeseen challenges arise that prematurely limit scaling of CMOS, there is no
practical investment from the government that will break through the barrier, given
the singular importance scaling CMOS has for industry.

60

6 POTENTIAL FOLLOW-ON WORK: DEEP DIVES

6.1.3 Device Technology Alternative to CMOS
This challenge addresses alternatives to CMOS after it reaches its practical limit
around 2023. The primary motivation for replacing CMOS is to continue scaling
- increase device density and lower electrical power. Several computational state
variables are being considered. The largest class is charge-based, many of which are
incorporating novel materials, such as graphene [108]. This area is already well-covered,
and the best choice of device should be left to industry.

Encoding information as a difference in the quantity of charge necessarily leads
to energy dissipation when changing state. Alternative state variables, including
electron spin [15], magnetic domains [89] and others offer the possibility of lower
energy dissipation in switching and transport, depending on distance. Specifically,
the areas of spin-wave, nonmagnetic, and all-spin logic are within the scope of the
industry, but they are considered long-term options. The government could accelerate
this research. This should lead to lower power cores for fundamental operations such
as floating point units.

State variables other than charge are likely not good candidates for long intercon-
nects on chips. Attenuation coefficients are large and lead to exponential attenuation
of signals with distance. The attenuation coefficient for spin waves is a millimeter and
microns for plasmons [32]. The attenuation coefficient of metal interconnects is on
the order of a centimeter and consequently most of the power dissipation results from
discharging the capacitance of the wire, which is linear with wire length. Consequently,
charge base interconnects are likely to remain the best choice in the foreseeable future
for long interconnects. Carbon nanotubes have been demonstrated to have significantly
lower electrical resistance and a capacitance similar to that of copper interconnects
[72, 118]. The lower resistance of single-walled CNTs results in fewer repeaters (neces-
sary to mitigate dispersion effects) on long interconnects and this can result in up
to an order of magnitude reduction in dissipation. Hence, CNTs may significantly
improve interconnect performance for long interconnects. The cost to develop CNT
interconnects is likely prohibitive for the government without significant support from
industry. Another interesting possibility are topological insulators. These material
offer the possibility of near perfect electrical conductivity at room temperature [129]

6.1.4 Extend CMOS to a Heterogenous Integration Platform
This is also a challenge called out in the ITRS roadmap, but unlike the ones discussed
above, the government should proactively influence the capability of the integration
platform. At present the ITRS roadmap does call for it to support “new device
technologies and primitive-level architecture to provide special purpose optimized
functional cores heterogeneously integrable with CMOS.” For the ultimate goal of
mixed-style computation device to be realized the platform must support neuro-inspired
computational cores and analog cores. The architecture should have a strong emphasis
on data transport and organization of the computation. The architecture should

61

6 POTENTIAL FOLLOW-ON WORK: DEEP DIVES

extend beyond the computational accelerator and provide support for unconventional,
reconfigurable, and programmable computation.

6.1.5 Develop New Functional Cores
Applications for which a key requirement is reduced power consumption will increas-
ingly benefit from specialized processing tuned to the application. Consequently, the
ability to include special-purpose functional cores at the device level will be advan-
tageous. The effort is closely related to using CMOS as a heterogeneous integration
platform. We expect that a major focus will be the integration of processing and
memory in these cores, possibly in the from of PIM devices and associative memories.

The success and outcome of developing new functional cores and extending CMOS
to a heterogenous integration platform will depend critically on choosing good compu-
tational problems. We do not have a strong opinion on which problems in the IC
provide the best focus for these innovations. One possibility is Boolean satisfiability,
though this question merits significant deliberation as part of the investment strategy.

6.1.6 Theory and Practice of Processor-in-Memory Computing
Because most of the energy budget of computation on modern digital architectures
is devoted to moving data between processor and memory, industry may be moving
towards architectures in which additional processing elements are collocated with
memory. Architectures in which memories have processing capability are known
generally as PIM computers. (The RAM in such machines has also historically been
called “intelligent RAM” or “computational RAM.”) Due to the growing chasm
between CPU performance and memory performance, PIM architectures are perhaps
our best hope for sustained increases in computational capability from CMOS hardware.
However, it is not clear how best to program such non-von Neumann systems.

There are signs that the hardware industry is already moving in the direction of
collocating processing with memory. The Hybrid Memory Cube (HMC), in which
memory modules are packaged in three dimensions to increase density and reduce
latency, includes a logic layer. The logic layer hosts the memory controller but has
remaining space for additional computational elements. Most of the top performing
machines in the Top 500 make use of hardware accelerators such as Graphic Processing
Units (GPUs) or the Xeon Phi, both of which can be thought of as random access
memory with collocated processors that have high-bandwidth, low-latency access to
local memory.

PIM computing was a popular research topic in the late 1990s and early 2000s,
but sees less attention today [see, for example, 91]. The nature of the work done on
PIM consists primarily of performance and cost estimates, with some proof-of-concept
hardware being built [53, 91]. While some progress was made in our understanding
of how to program a PIM architecture, this progress is the result of considering a

62

6 POTENTIAL FOLLOW-ON WORK: DEEP DIVES

handful of applications on the architecture, and it is not clear that an underlying
theory of PIM programming developed [25, 56, 120]. (It should be noted, however,
that the IC may have considerable experience with PIM architectures, as evidenced
by the Terasys [53]. Before embarking on the PIM research program described below,
the IC’s history and experience with PIM should first be investigated.)

We envision a two-pronged, two-phase effort whose goal is to maximize our ability
to program increasingly heterogeneous computers that are approaching a PIM archi-
tecture. In phase one, one prong of the effort will develop a theoretical understanding
of how to program PIM computers, including tools for performance prediction as a
function of system design parameters. This understanding is analogous to the detailed
understanding we have of von Neumann machines, in which data moving to and from
memory is the paradigm. The other prong in phase one of the effort will port a range
of applications (of interest to the IC, but perhaps more broadly) to PIM architec-
tures. The applications could be drawn from the interprocess communication families
(“dwarves”) identified in Asanovic et al. [10]. With the theoretical understanding and
practical experience gained from phase one, domain-specific compilers and languages
will be designed and built in phase two. The domain-specific compilers will support
some general-purpose, object-oriented language [object-oriented languages are a very
natural fit for PIM; see, for example, 25]. The domain-specific languages will support
those domains that are deemed most promising to benefit from PIM and most relevant
for the IC. These domains might be, for example, discrete mathematics and graph
analysis. As pointed out in JASON [65], domain-specific compilers and languages may
accelerate code development in an era of rapidly evolving hardware.

6.2 Neuro-Inspired Computation
The following topics merit further exploration towards expanding future capabilities
of neuro-inspired computation:

• Silicon-compatible devices for neuron, synapse, axon, and dendrite, and

• Interdisciplinary understanding of neural structure, computational model, and
algorithms.

Neuro-inspired computation is significantly less mature than classical digital or even
analog computation. While much focus has been on learning mechanisms, such as
STPD, the overall computational model and means merits more holistic consideration
over the three areas mentioned previously.

6.2.1 Silicon-Compatible Devices for Neuron, Axon, Synapse, and Dendrite
It is really the synapse that is the most challenging. The synapse allows an amount of
current to pass from the axon of one neuron to the dendrite of another neuron. Learning
adjusts the amount of current that flows. Memristors are leading candidate for silicon

63

6 POTENTIAL FOLLOW-ON WORK: DEEP DIVES

synapses. They are two-terminal devices. An alternative is the synaptic transistor,
which is a three terminal device. Synaptic transistors are traditionally realized using
floating gate transistors and more recently using adaptive oxides [55, 114, 132], which
are in the same family as the materials used for memristors. Properties of adaptive
oxides, such as resistivity, can be modified electrically in a non-volatile manner.
The goal of government investment would be to develop a synaptic transistor and
understand its advantages from an architectural perspective.

6.2.2 Interdisciplinary Understanding of Neural Structure, Computational
Model, and Algorithms
There is still much that we do not understand about how the brain works. Furthermore
the performance of our best artificial intelligence (AI) algorithms is still lacking
compared to the capability of the brain. We need a serious interdisciplinary effort to
explore these issues and guide our development of this style of computation. This
topic has been a consistent theme throughout this paper.

6.3 Analog Computation
The following topics merit further exploration towards expanding future capabilities
of analog computation:

• Role of analog computation, and

• Interaction of analog computation with other computation styles.

Analog computing is relatively mature, though it has fallen out of favor because of
advances in digital computing and the promise of neuro-inspired computing.

6.3.1 Role of Analog Computing
One possibility is the mapping of problems into dynamical systems and solving for the
evaluation using an analog computation. Such an approach was recently developed
for Boolean satisfiabilty.

6.3.2 Interaction of Analog Computation with Other Computation Styles
CMOS is a sound platform for analog computing, though we need to understand its
role in computation for the IC and its interaction for support with other computation
styles. The ultimate computation potential may lie in the way various styles are mixed
in the solution.

64

7 Abbreviations

1D one-dimensional
2D two-dimensional
3D three-dimensional
AC alternating current
AER Address-Event Representation
AI artificial intelligence
ASIC application-specific integrated circuit
C3 Cyrogenic Computing Complexity
CMOS complementary metal-oxide semiconductor
CPU central processing unit
DARPA Defense Advanced Research Projects Agency
DC direct current
DES Data Encryption Standard
DNA deoxyribonucleic acid
DOE Department of Energy
DRAM dynamic random-access memory
DX double-crossover
EAC extended analog computer
EU European Union
FET field-effect transistor
FLOPS floating point operation per second
GFLOPS giga (109) floating point operations per second
GIOPS giga (109) instruction operations per second
GFP green fluorescent protein
GPAC general-purpose analog computer
GPU graphics processing unit
HBP Human Brain Project
HMC human memory cube
IARPA Intelligence Advanced Research Projects Activity
IC Intelligence Community
IOPS instruction operations per second
ITRS International Technology Roadmap for Semiconductors
LIGO Laser Interferometer Gravitational-Wave Observatory
MEMS microelectromechanical systems
MRI Magnetic Resonance Imaging
NEF Neural Engineering Framework
NMOS N-type metal-oxide semiconductor
NSA National Security Agency

65

7 ABBREVIATIONS

ODE ordinary differential equation
PCR polymerase chain reaction
PIM processor in memory
PFLOPS peta (1015) floating point operations per second
PIOPS peta (1015) instruction operations per second
PUM processor under memory
QTM quantum Turing machine
RAM random-access memory
RLC resistance, inductance, and capacitance
RNA ribonucleic acid
SFQ simple flux quanta; simple flux quantum
SOI silicon on insulator
SPD special-purpose device
SRAM static random-access memory
STDP spike-timing dependent plasticity
TRL Technology Readiness Level
USG United States Government
VSLI very large-scale integration
XOR exclusive OR

66

8 Acknowledgments

The authors acknowledge John Fregeau for his contributions to this report, including
sections 4.1, 4.3.1, and 4.5.

67

References

[1] “IC Insights,”
http://www.icinsights.com/data/articles/documents/443.pdf

[2] “Intel Corporation,”
http://www.intel.com/content/www/us/en/history/

museum-story-of-intel-4004.html

[3] “ITRS Home,”
http://www.itrs.net/

[4] “Semiconductor Industry Association,”
http://www.semiconductors.org/news/2014/02/03/global_sales_

report_2013/semiconductor_industry_posts_record_sales_in_2013/

[5] “14-qubit entanglement: Creation and coherence,” Physical Review Letters, Vol.
106, p. 130506, 2011

[6] Aaronson, S., “Guest column: NP-complete problems and physical reality,”
ACM Sigact News, Vol. 36, pp. 30–52, 2005

[7] Adleman, L., “Molecular computation of solutions to combinatorial problems,”
Science, Vol. 266, pp. 1021–1024, 1994
http://www.ncbi.nlm.nih.gov/pubmed/7973651http://www.sciencemag.

org/cgi/doi/10.1126/science.7973651

[8] Alaghi, A. & Hayes, J. P., “Survey of Stochastic Computing,” ACM Trans.
Embed. Comput. Syst., Vol. 12, pp. 92:1–92:19, 2013
http://doi.acm.org/10.1145/2465787.2465794

[9] Alspector, J., Gupta, B., & Allen, R. B., “Performance of a stochastic learning
microchip,” in Artificial neural networks, pp. 66–78, IEEE Press, 1990

[10] Asanovic, K., et al., “The landscape of parallel computing research: A view
from berkeley,” Technical Report UCB/EECS-2006-183, EECS Department,
University of California, Berkeley, Tech. rep., 2006
https://www.classle.net/sites/default/files/text/33631/The_

Landscape_of_Parallel_Computing_Research.pdf

[11] Ausländer, S., Ausländer, D., Müller, M., Wieland, M., & Fussenegger, M.,
“Programmable single-cell mammalian biocomputers.” Nature, Vol. 487, pp. 123–
7, 2012
http://www.ncbi.nlm.nih.gov/pubmed/22722847

69

REFERENCES

[12] Bamford, S., Murray, A., & Willshaw, D., “Silicon synapses self-correct for both
mismatch and design inhomogeneities,” Electronics Letters, Vol. 48, p. 360,
2012
http://digital-library.theiet.org/content/journals/10.1049/el.

2012.0257

[13] Barish, R. D., Schulman, R., Rothemund, P. W. K., & Winfree, E., “An
information-bearing seed for nucleating algorithmic self-assembly.” Proceedings
of the National Academy of Sciences of the United States of America, Vol. 106,
pp. 6054–9, 2009
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=

2660060&tool=pmcentrez&rendertype=abstract

[14] Beaver, D., “Molecular Computing,” Pennsylvania State University, Tech. Rep.
814, 1995

[15] Behin-Aein, B., Datta, D., Salahuddin, S., & Datta, S., “Proposal for an all-spin
logic device with built-in memory,” Nature Nanotechnology, Vol. 5, pp. 266–270,
2010
http://www.nature.com/nnano/journal/v5/n4/abs/nnano.2010.31.html

[16] Bekenstein, J. D., “Black holes and entropy,” Physical Review D, Vol. 7, p. 2333,
1973

[17] Benenson, Y., “Biomolecular computing systems: principles, progress and poten-
tial.” Nature reviews. Genetics, Vol. 13, pp. 455–68, 2012
http://www.ncbi.nlm.nih.gov/pubmed/22688678

[18] Benenson, Y., Gil, B., Ben-Dor, U., Adar, R., & Shapiro, E., “An autonomous
molecular computer for logical control of gene expression.” Nature, Vol. 429, pp.
423–9, 2004
http://www.ncbi.nlm.nih.gov/pubmed/15116117

[19] Bennett, C. H., “Logical reversibility of computation,” IBM journal of Research
and Development, Vol. 17, pp. 525–532, 1973

[20] Bennett, C. H., “The thermodynamics of computation—a review,” International
Journal of Theoretical Physics, Vol. 21, pp. 905–940, 1982
http://link.springer.com/10.1007/BF02084158

[21] Blum, L., Shub, M., & Smale, S., “On a theory of computation and complexity
over the real numbers: NO-completeness, recursive functions and universal
machines,” Bulletin of the American Mathematical Society, Vol. 21, 1989

[22] Boneh, D., Dunworth, C., Lipton, R. J., & Sgall, J., “On the computational
power of DNA,” Discrete Applied Mathematics, Vol. 71, pp. 79–94, 1996
http://linkinghub.elsevier.com/retrieve/pii/S0166218X96000583

70

REFERENCES

[23] Boyden, E. S., Zhang, F., Bamberg, E., Nagel, G., & Deisseroth, K., “Millisecond-
timescale, genetically targeted optical control of neural activity,” Nature neuro-
science, Vol. 8, pp. 1263–1268, 2005

[24] Branicky, M. S., “Analog computation with continuous ODEs,” in Physics and
Computation, 1994. PhysComp’94, Proceedings., Workshop on, pp. 265–274,
IEEE, 1994

[25] Brockman, J. B., Kogge, P. M., Sterling, T. L., Freeh, V. W., & Kuntz, S. K.,
“Microservers: A new memory semantics for massively parallel computing,” in
Proceedings of the 13th international conference on Supercomputing, p. 454463,
1999
http://dl.acm.org/citation.cfm?id=305234

[26] Brun, Y., “Arithmetic computation in the tile assembly model: Addition and
multiplication,” Theoretical Computer Science, Vol. 378, pp. 17–31, 2007
http://linkinghub.elsevier.com/retrieve/pii/S0304397506007894

[27] Brun, Y., “Nondeterministic polynomial time factoring in the tile assembly
model,” Theoretical Computer Science, Vol. 395, pp. 3–23, 2008
http://linkinghub.elsevier.com/retrieve/pii/S0304397507006287

[28] Brun, Y., “Improving Efficiency of 3-SAT-Solving Tile Systems,” pp. 1–12, 2011

[29] Bunka, D. H. J. & Stockley, P. G., “Aptamers come of age - at last.” Nature
reviews. Microbiology, Vol. 4, pp. 588–96, 2006
http://www.ncbi.nlm.nih.gov/pubmed/16845429

[30] Chang, F., et al., “Bigtable: A Distributed Storage System for Structured Data,”
ACM Transactions on Computer Systems, Vol. 26, pp. 1–26, 2008
http://portal.acm.org/citation.cfm?doid=1327452.1327492http:

//portal.acm.org/citation.cfm?doid=1365815.1365816

[31] Chen, Y. Y., Galloway, K. E., & Smolke, C. D., “Synthetic biology: advancing
biological frontiers by building synthetic systems.” Genome biology, Vol. 13, p.
240, 2012
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=

3334564&tool=pmcentrez&rendertype=abstract

[32] Conway, J. A., Sahni, S., & Szkopek, T., “Plasmonic interconnects versus
conventional interconnects: a comparison of latency, crosstalk and energy costs,”
Optics Express, Vol. 15, pp. 4474–4484, 2007
http://www.opticsexpress.org/abstract.cfm?URI=oe-15-8-4474

[33] Culler, S. J., Hoff, K. G., & Smolke, C. D., “Reprogramming Cellular Behavior
with RNA Controllers Responsive to Endogenous Proteins,” Science, Vol. 330,

71

REFERENCES

pp. 1251–1255, 2010, PMID: 21109673
http://www.sciencemag.org/content/330/6008/1251

[34] Dan, Y. & Poo, M.-m., “Spike Timing-Dependent Plasticity of Neural Circuits,”
Neuron, Vol. 44, pp. 23–30, 2004
http://www.sciencedirect.com/science/article/pii/

S0896627304005768

[35] Daniel, R., Rubens, J. R., Sarpeshkar, R., & Lu, T. K., “Synthetic analog
computation in living cells.” Nature, Vol. 497, pp. 619–23, 2013
http://www.ncbi.nlm.nih.gov/pubmed/23676681

[36] Dean, J. & Ghemawat, S., “MapReduce: Simplified Data Processing on Large
Clusters,” Communications of the ACM, Vol. 51, p. 107, 2008
http://portal.acm.org/citation.cfm?doid=1327452.1327492

[37] Deutsch, D., “Quantum theory, the Church-Turing principle and the universal
quantum computer,” Proceedings of the Royal Society of London. A. Mathe-
matical and Physical Sciences, Vol. 400, p. 97117, 1985
http://rspa.royalsocietypublishing.org/content/400/1818/97.short

[38] Dlugosch, P., Brown, D., Glendenning, P., Leventhal, M., & Noyes, H., “An Effi-
cient and Scalable Semiconductor Architecture for Parallel Automata Processing,”
to appear in IEEE Transactions on Parallel and Distributed Systems, 2013

[39] Doty, D., “Theory of algorithmic self-assembly,” Communications of the ACM,
Vol. 55, p. 78, 2012
http://dl.acm.org/citation.cfm?doid=2380656.2380675

[40] Douglas, S. M., Bachelet, I., & Church, G. M., “A logic-gated nanorobot for
targeted transport of molecular payloads.” Science, Vol. 335, pp. 831–4, 2012
http://www.ncbi.nlm.nih.gov/pubmed/22344439

[41] Douglas, S. M., Dietz, H., Liedl, T., Hogberg, B., Graf, F., & Shih, W. M.,
“Self-assembly of DNA into nanoscale three-dimensional shapes.” Nature, Vol.
459, pp. 414–8, 2009
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=

2688462&tool=pmcentrez&rendertype=abstract

[42] Elowitz, M. B. & Leibler, S., “A synthetic oscillatory network of transcriptional
regulators,” Nature, Vol. 403, pp. 335–338, 2000
http://www.nature.com/nature/journal/v403/n6767/abs/403335a0.html

[43] Endy, D., “Foundations for engineering biology.” Nature, Vol. 438, pp. 449–53,
2005
http://www.ncbi.nlm.nih.gov/pubmed/16306983

72

REFERENCES

[44] Ercsey-Ravasz, M. & Toroczkai, Z., “Optimization hardness as transient chaos
in an analog approach to constraint satisfaction,” Nature Physics, Vol. 7, pp.
966–970, 2011
http://www.nature.com/nphys/journal/v7/n12/abs/nphys2105.html

[45] Feynman, R. P., “Simulating physics with computers,” International Journal of
Theoretical Physics, Vol. 21, p. 467488, 1982
http://www.springerlink.com/index/T2X8115127841630.pdf

[46] Friedland, A. E., Lu, T. K., Wang, X., Shi, D., Church, G., & Collins, J. J.,
“Synthetic Gene Networks That Count,” Science, Vol. 324, pp. 1199–1202, 2009,
PMID: 19478183
http://www.sciencemag.org/content/324/5931/1199

[47] Fu, T. J. & Seeman, N. C., “DNA double-crossover molecules.” Biochemistry,
Vol. 32, pp. 3211–20, 1993
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=

1302964&tool=pmcentrez&rendertype=abstract

[48] Furber, S., et al., “Overview of the SpiNNaker System Architecture,” IEEE
Transactions on Computers, Vol. 62, pp. 2454–2467, 2013

[49] Gardner, T. S., Cantor, C. R., & Collins, J. J., “Construction of a genetic toggle
switch in Escherichia coli,” Nature, Vol. 403, pp. 339–342, 2000
http://www.nature.com/nature/journal/v403/n6767/abs/403339a0.html

[50] Ghemawat, S., Gobioff, H., & Leung, S.-t., “The Google file system,” ACM
SIGOPS Operating Systems Review, Vol. 37, p. 29, 2003
http://portal.acm.org/citation.cfm?doid=1165389.945450

[51] Gibson, D. G., et al., “Creation of a Bacterial Cell Controlled by a Chemically
Synthesized Genome,” Science, Vol. 329, pp. 52–56, 2010, PMID: 20488990
http://www.sciencemag.org/content/329/5987/52

[52] Glanz, J., “Google Details Electricity Usage of Its Data Centers,” The New
York Times, 2011
http://www.nytimes.com/2011/09/09/technology/

google-details-and-defends-its-use-of-electricity.html

[53] Gokhale, M., Holmes, B., & Iobst, K., “Processing in memory: The Terasys
massively parallel PIM array,” Computer, Vol. 28, p. 2331, 1995
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=375174

[54] Google, “Google See where the Internet lives,” , 2013
http://www.google.com/about/datacenters/gallery/#/places

73

REFERENCES

[55] Ha, S. D. & Ramanathan, S., “Adaptive oxide electronics: A review,” Journal
of Applied Physics, Vol. 110, 2011

[56] Hall, M., et al., “Mapping irregular applications to DIVA, a PIM-based data-
intensive architecture,” in Proceedings of the 1999 ACM/IEEE conference on
Supercomputing (CDROM), p. 57, 1999
http://dl.acm.org/citation.cfm?id=331589

[57] Ham, T. S., Lee, S. K., Keasling, J. D., & Arkin, A. P., “A tightly regulated
inducible expression system utilizing the fim inversion recombination switch,”
Biotechnology and Bioengineering, Vol. 94, p. 14, 2006
http://onlinelibrary.wiley.com/doi/10.1002/bit.20916/abstract

[58] Hennessy, J. L. & Patterson, D. A., Computer architecture: a quantitative
approach, Elsevier, 2012

[59] Holler, M., Tam, S., Castro, H., & Benson, R., “An electrically trainable artificial
neural network (ETANN) with 10240 ’floating gate’ synapses,” in , International
Joint Conference on Neural Networks, 1989. IJCNN, pp. 191–196 vol.2, 1989

[60] Holler, M., Tam, S., Castro, H., & Benson, R., “An electrically trainable artificial
neural network (etann) with 10240’floating gate’synapses,” in Neural Networks,
1989. IJCNN., International Joint Conference on, pp. 191–196, IEEE, 1989

[61] Holmes, D., Ripple, A., & Manheimer, M., “Energy-Efficient Superconducting
Computing—Power Budgets and Requirements,” Applied Superconductivity,
IEEE Transactions on, Vol. 23, 2013

[62] Indiveri, G., Chicca, E., & Douglas, R. J., “Artificial Cognitive Systems: From
VLSI Networks of Spiking Neurons to Neuromorphic Cognition,” Cognitive
Computation, Vol. 1, pp. 119–127, 2009
http://link.springer.com/article/10.1007/s12559-008-9003-6

[63] Indiveri, G., et al., “Neuromorphic Silicon Neuron Circuits,” Frontiers in Neuro-
science, Vol. 5, 2011, PMID: 21747754 PMCID: PMC3130465
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3130465/

[64] Jack Ng, Y. & Van Dam, H., “Limit to space-time measurement,” Modern
Physics Letters A, Vol. 9, pp. 335–340, 1994

[65] JASON, “Technical Challenges of Exascale Computing,” JASON, Tech. Rep.
JSR-12-310, 2013

[66] Jozsa, R., “Quantum factoring, discrete logarithms, and the hidden subgroup
problem,” Computing in Science & Engineering, Vol. 3, pp. 34–43, 2001

74

REFERENCES

[67] Khalil, A. S. & Collins, J. J., “Synthetic biology: applications come of age.”
Nature reviews. Genetics, Vol. 11, pp. 367–79, 2010
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=

2896386&tool=pmcentrez&rendertype=abstract

[68] Kitano, H., “Computational systems biology.” Nature, Vol. 420, pp. 206–10,
2002
http://www.ncbi.nlm.nih.gov/pubmed/17052114

[69] Kornberg, A. & Baker, e. a., Tania A, DNA replication, Vol. 5, WH Freeman
New York, 1992

[70] Landauer, R., “Irreversibility and heat generation in the computing process,”
IBM Journal of Research and Development, Vol. 5, pp. 183–191, 1961

[71] Lewis, N. & Weinberger, P., “DNA Computing,” JASON, Tech. rep., 1995

[72] Li, H., Xu, C., & Banerjee, K., “Carbon Nanomaterials: The Ideal Interconnect
Technology for Next-Generation ICs,” IEEE Design Test of Computers, Vol. 27,
pp. 20–31, 2010

[73] Li, X., Yang, X., Qi, J., & Seeman, N. C., “Antiparallel DNA Double Crossover
Molecules As Components for Nanoconstruction,” Journal of the American
Chemical Society, Vol. 118, pp. 6131–6140, 1996
http://pubs.acs.org/doi/abs/10.1021/ja960162o

[74] Likharev, K. K., “CrossNets: Neuromorphic Hybrid CMOS/Nanoelectronic
Networks,” Science of Advanced Materials, Vol. 3, pp. 322–331, 2011

[75] Lima, S. Q. & Miesenböck, G., “Remote control of behavior through genetically
targeted photostimulation of neurons,” Cell, Vol. 121, pp. 141–152, 2005

[76] Lipton, R. J., Boneh, D., & Dimworth, C., “Breaking DES Using a Molecular
Computer,” Vol. 27, pp. 1–20, 1996

[77] Lloyd, S., “Ultimate physical limits to computation,” Nature, Vol. 406, pp.
1047–1054, 2000

[78] Lyon, R. & Mead, C., “An analog electronic cochlea,” IEEE Transactions on
Acoustics, Speech and Signal Processing, Vol. 36, pp. 1119–1134, 1988

[79] MacLennan, B. J., “A review of analog computing,” Department of Electrical
Engineering & Computer Science, University of Tennessee, Technical Report
UT-CS-07-601 (September), 2007
ftp://ftp.cs.utk.edu/pub/maclennan/RAC-TR.pdf

75

REFERENCES

[80] Mallik, U., Vogelstein, R., Culurciello, E., Etienne-Cummings, R., & Cauwen-
berghs, G., “A real-time spike-domain sensory information processing system
[image processing applications],” in IEEE International Symposium on Circuits
and Systems, 2005. ISCAS 2005, pp. 1919–1922 Vol. 3, 2005

[81] Margolus, N. & Levitin, L. B., “The maximum speed of dynamical evolution,”
Physica D: Nonlinear Phenomena, Vol. 120, pp. 188–195, 1998

[82] Marr, B., George, J., Degnan, B., Anderson, D. V., & Hasler, P., “Error Immune
Logic for Low-power Probabilistic Computing,” VLSI Des., Vol. 2010, pp. 6:1–
6:9, 2010
http://dx.doi.org/10.1155/2010/460312

[83] Mead, C. A. & Mahowald, M. A., “A silicon model of early visual processing,”
Neural Networks, Vol. 1, pp. 91–97, 1988
http://www.sciencedirect.com/science/article/pii/089360808890024X

[84] Mills, J. W., et al., “Extended analog computers: A unifying paradigm for VLSI,
plastic and colloidal computing systems,” in Workshop on Unique Chips and
Systems (UCAS-1). Held in conjunction with IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS05), Austin, TX, 2005

[85] Mitra, S., Fusi, S., & Indiveri, G., “Real-Time Classification of Complex Patterns
Using Spike-Based Learning in Neuromorphic VLSI,” IEEE Transactions on
Biomedical Circuits and Systems, Vol. 3, pp. 32–42, 2009

[86] Miyamoto, T., Razavi, S., DeRose, R., & Inoue, T., “Synthesizing biomolecule-
based Boolean logic gates.” ACS synthetic biology, Vol. 2, pp. 72–82, 2013
http://www.ncbi.nlm.nih.gov/pubmed/23526588

[87] Miyamoto, T., Razavi, S., DeRose, R., & Inoue, T., “Synthesizing Biomolecule-
Based Boolean Logic Gates,” ACS Synthetic Biology, Vol. 2, pp. 72–82, 2013
http://dx.doi.org/10.1021/sb3001112

[88] Niazov, T., Baron, R., Katz, E., Lioubashevski, O., & Willner, I., “Concatenated
logic gates using four coupled biocatalysts operating in series.” Proceedings of
the National Academy of Sciences of the United States of America, Vol. 103, pp.
17160–17163, 2006
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=

1634834&tool=pmcentrez&rendertype=abstract

[89] Niemier, M. T., et al., “Nanomagnet logic: progress toward system-level integra-
tion,” Journal of Physics: Condensed Matter, Vol. 23, p. 493202, 2011
http://iopscience.iop.org/0953-8984/23/49/493202

76

REFERENCES

[90] Page, L., Brin, S., Motwani, R., & Winograd, T., “The PageRank citation
ranking: Bringing order to the web,” , 1999

[91] Patterson, D., et al., “A case for intelligent RAM,” Micro, IEEE, Vol. 17, p.
3444, 1997
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=592312

[92] Pfeil, T., et al., “Six networks on a universal neuromorphic computing substrate,”
Frontiers in Neuroscience, Vol. 7, 2013, PMID: 23423583 PMCID: PMC3575075
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3575075/

[93] Poon, C.-S. & Zhou, K., “Neuromorphic Silicon Neurons and Large-Scale Neural
Networks: Challenges and Opportunities,” Frontiers in Neuroscience, Vol. 5,
2011, PMID: 21991244 PMCID: PMC3181466
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3181466/

[94] Qian, L. & Winfree, E., “Scaling up digital circuit computation with DNA
strand displacement cascades.” Science, Vol. 332, pp. 1196–201, 2011
http://www.ncbi.nlm.nih.gov/pubmed/21636773

[95] Qian, L., Winfree, E., & Bruck, J., “Neural network computation with DNA
strand displacement cascades.” Nature, Vol. 475, pp. 368–72, 2011
http://www.ncbi.nlm.nih.gov/pubmed/21776082

[96] Rajendran, B., et al., “Specifications of nanoscale devices and circuits for
neuromorphic computational systems,” IEEE Transactions on Electron Devices,
Vol. 60, pp. 246–253, 2013

[97] Ramakrishnan, S., Hasler, P., & Gordon, C., “Floating Gate Synapses With
Spike-Time-Dependent Plasticity,” IEEE Transactions on Biomedical Circuits
and Systems, Vol. 5, pp. 244–252, 2011

[98] Reif, J. H., “Local parallel biomolecular computation,” DNA-Based Computers,
Vol. 3, pp. 217–254, 1999

[99] Rinaudo, K., Bleris, L., Maddamsetti, R., Subramanian, S., Weiss, R., &
Benenson, Y., “A universal RNAi-based logic evaluator that operates in
mammalian cells,” Nature Biotechnology, Vol. 25, pp. 795–801, 2007
http://www.nature.com/nbt/journal/v25/n7/abs/nbt1307.html

[100] Robinson, R. M., “Undecidability and nonperiodicity for tilings of the plane,”
Inventiones Mathematicae, Vol. 12, pp. 177–209, 1971
http://link.springer.com/10.1007/BF01418780

[101] Rothemund, P. W. K., “A DNA and restriction enzyme implementation of
Turing machines,” pp. 75–120, 1996

77

REFERENCES

[102] Rothemund, P. W. K., “Folding DNA to create nanoscale shapes and patterns.”
Nature, Vol. 440, pp. 297–302, 2006
http://www.ncbi.nlm.nih.gov/pubmed/16541064

[103] Rothemund, P. W. K. & Winfree, E., “The Program-Size Complexity of Self-
Assembled Squares,” pp. 1–10, 2000

[104] Rubel, L. A., “The brain as an analog computer,” Journal of theoretical neuro-
biology, Vol. 4, pp. 73–81, 1985

[105] Rubel, L. A., “The extended analog computer,” Advances in Applied Mathe-
matics, Vol. 14, pp. 39–50, 1993

[106] Sarpeshkar, R., Ultra low power bioelectronics, Vol. 1, Cambridge University
Press Cambridge, UK, 2010

[107] Schemmel, J., Brderle, D., Grbl, A., Hock, M., Meier, K., & Millner, S., “A
wafer-scale neuromorphic hardware system for large-scale neural modeling,” in
Proceedings of 2010 IEEE International Symposium on Circuits and Systems
(ISCAS), pp. 1947–1950, 2010

[108] Schwierz, F., “Graphene transistors,” Nature Nanotechnology, Vol. 5, pp. 487–
496, 2010
http://www.nature.com/nnano/journal/v5/n7/abs/nnano.2010.89.html

[109] Serrano-Gotarredona, R., et al., “CAVIAR: A 45k neuron, 5M synapse, 12G
connects/s AER hardware sensory–processing–learning–actuating system for
high-speed visual object recognition and tracking,” Neural Networks, IEEE
Transactions on, Vol. 20, pp. 1417–1438, 2009

[110] Serrano-Gotarredona, R., et al., “CAVIAR: A 45k Neuron, 5M Synapse, 12G
Connects/s AER Hardware Sensory Processing; Learning Actuating System for
High-Speed Visual Object Recognition and Tracking,” IEEE Transactions on
Neural Networks, Vol. 20, pp. 1417–1438, 2009

[111] Serrano-Gotarredona, T., Masquelier, T., Prodromakis, T., Indiveri, G., &
Linares-Barranco, B., “STDP and STDP variations with memristors for spiking
neuromorphic learning systems,” Frontiers in Neuroscience, Vol. 7, 2013, PMID:
23423540 PMCID: PMC3575074
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3575074/

[112] Shannon, C. E., “Mathematical theory of the differential analyzer,” J. Math.
Phys. MIT, Vol. 20, pp. 337–354, 1941

[113] Sharad, M., Augustine, C., Panagopoulos, G., & Roy, K., “Proposal For Neuro-
morphic Hardware Using Spin Devices,” arXiv:1206.3227 [cond-mat], 2012
http://arxiv.org/abs/1206.3227

78

REFERENCES

[114] Shi, J., Ha, S. D., Zhou, Y., Schoofs, F., & Ramanathan, S., “A correlated
nickelate synaptic transistor,” Nature Communications, Vol. 4, 2013
http://www.nature.com/ncomms/2013/131031/ncomms3676/full/

ncomms3676.html

[115] Shor, P. W., “Why haven’t more quantum algorithms been found?” Journal of
the ACM (JACM), Vol. 50, p. 8790, 2003
http://dl.acm.org/citation.cfm?id=602408

[116] Siegelman, H. T., Neural networks and analog computation: Beyond the Turing
limit, Vol. 20, Springer, 1999

[117] Smith, W. D., “DNA computers in vitro and vivo,” Vol. 27, pp. 121–186, 1996

[118] Srivastava, N., Li, H., Kreupl, F., & Banerjee, K., “On the Applicability of
Single-Walled Carbon Nanotubes as VLSI Interconnects,” IEEE Transactions
on Nanotechnology, Vol. 8, pp. 542–559, 2009

[119] Stepney, S., et al., “Journeys in non-classical computation I: A grand challenge for
computing research,” International Journal of Parallel, Emergent and Distributed
Systems, Vol. 20, pp. 5–19, 2005, http://www.tandfonline.com/doi/pdf/10.
1080/17445760500033291

http://www.tandfonline.com/doi/abs/10.1080/17445760500033291

[120] Sterling, T. L. & Zima, H. P., “Gilgamesh: a multithreaded processor-in-memory
architecture for petaflops computing,” in Supercomputing, ACM/IEEE 2002
Conference, p. 4848, 2002
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1592884

[121] Stojanovic, M. N. & Stefanovic, D., “A deoxyribozyme-based molecular
automaton.” Nature Biotechnology, Vol. 21, pp. 1069–74, 2003
http://www.ncbi.nlm.nih.gov/pubmed/12923549

[122] Turing, A. M., “Computability and -Definability,” The Journal of Symbolic
Logic, Vol. 2, pp. pp. 153–163, 1937
http://www.jstor.org/stable/2268280

[123] Wang, H., “Proving theorems by pattern recognition I,” Communications of the
ACM, Vol. 3, pp. 220–234, 1960
http://portal.acm.org/citation.cfm?doid=367177.367224

[124] Weisstein, E. W., “Turing Machine – from Wolfram MathWorld,”
http://mathworld.wolfram.com/TuringMachine.html

[125] Win, M. N. & Smolke, C. D., “Higher-order cellular information processing with
synthetic RNA devices.” Science (New York, N.Y.), Vol. 322, pp. 456–60, 2008

79

REFERENCES

http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=

2805114&tool=pmcentrez&rendertype=abstract

[126] Win, M. N. & Smolke, C. D., “Higher-Order Cellular Information Processing
with Synthetic RNA Devices,” Science, Vol. 322, pp. 456–460, 2008, PMID:
18927397
http://www.sciencemag.org/content/322/5900/456

[127] Winfree, E., “Simulations of computing by self-assembly,” 1998

[128] Winfree, E., Liu, F., Wenzler, L. a., & Seeman, N. C., “Design and self-assembly
of two-dimensional DNA crystals.” Nature, Vol. 394, pp. 539–44, 1998
http://www.ncbi.nlm.nih.gov/pubmed/9707114

[129] Xu, Y., et al., “Large-Gap Quantum Spin Hall Insulators in Tin Films,” Physical
Review Letters, Vol. 111, p. 136804, 2013
http://link.aps.org/doi/10.1103/PhysRevLett.111.136804

[130] Zamarreno-Ramos, C., Linares-Barranco, A., Serrano-Gotarredona, T., &
Linares-Barranco, B., “Multicasting Mesh AER: A Scalable Assembly Approach
for Reconfigurable Neuromorphic Structured AER Systems. Application to
ConvNets,” IEEE Transactions on Biomedical Circuits and Systems, Vol. 7, pp.
82–102, 2013

[131] Zhirnov, V., Cavin, R., Hutchby, J., & Bourianoff, G., “Limits to binary logic
switch scaling - a gedanken model,” Proceedings of the IEEE, Vol. 91, pp.
1934–1939, 2003

[132] Zhou, Y. & Ramanathan, S., “Correlated Electron Materials and Field Effect
Transistors for Logic: A Review,” Critical Reviews in Solid State and Materials
Sciences, Vol. 38, pp. 286–317, 2013, arXiv:1212.2684 [cond-mat]
http://arxiv.org/abs/1212.2684

80

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and
Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person
shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM
TO THE ABOVE ADDRESS.

1. REPORT DATE
January 2014

2. REPORT TYPE
Final

3. DATES COVERED (From–To)
Apr 2013 – Jan 2014

4. TITLE AND SUBTITLE

An Initial Look at Alternative Computing Technologies
for the Intelligence Community

5a. CONTRACT NUMBER
HQ0034-14-D-0001

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

Lance Joneckis, IDA
David Koester, MITRE Corporation
Joshua Alspector, IDA

5d. PROJECT NUMBER

5e. TASK NUMBER
ET-2-2954.22

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Institute for Defense Analyses
4850 Mark Center Drive
Alexandria, VA 22311-1882

8. PERFORMING ORGANIZATION REPORT
NUMBER

IDA Paper P-5114
Log: H 14-000128

9. SPONSORING / MONITORING AGENCY NAME(S) AND
ADDRESS(ES)

Office of the Director of National Intelligence
Intelligence Advanced Research Projects Activity
Washington, DC 20511

10. SPONSOR/MONITOR’S ACRONYM(S)

IARPA

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited (20 May 2014).

13. SUPPLEMENTARY NOTES

14. ABSTRACT

We have broadly surveyed the landscape of computing as it relates to the problems of interest to the intelligence
community (IC). We find there is no single alternative computing technology (ACT) that is universally applicable to the wide
range of IC applications, although there are particular solutions that are suited to individual application classes. We
therefore recommend that the IC consider an application-driven, holistic design approach that spans a broad range of
technologies and computational models. The application classes we considered were discrete math, big data, distributed
sensing and processing, scientific/numerical simulation, robotics/autonomous systems. Holistic design could extend
beyond a single technology to include integration of multiple, heterogeneous ACTs as needed to meet application/archi-
tecture requirements.
15. SUBJECT TERMS

alternative computing technology, analog computing, biomolecular computing, high-performance computing (HPC), neuro-
inspired computing, neuromorphic computing, quantum computing, superconductive computing
16. SECURITY CLASSIFICATION OF: 17. LIMITATION

 OF
ABSTRACT

SAR

18. NUMBER
 OF

PAGES

86

19a. NAME OF RESPONSIBLE PERSON
Peter Highnam

a. REPORT
Uncl.

b. ABSTRACT
Uncl.

c. THIS PAGE
Uncl.

19b. TELEPHONE NUMBER (include area code)
(301) 851-7582

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

	P5114 Final Cover.pdf
	Blank Page

	P5114 Final Cover.pdf
	Blank Page

	Blank Page

